i AT RO OB R R B E il
WIS SRS (CCCL D) S 38 By BB

¥f O C C I 1 4% oE Ay L U

(B EAEFREND

REt+aE=A+=H

VI B T R N

1. &

DEREATAFENA, EFEMEMIEECCCIL B 11,20, & rp)
SR LE B

D% —F (Plane) M1, 2B (Section) EHFMABFHI MR ETEH
TG B OTHEREE) (RGBZRH. TN, BRI ENE
B AYESIF T (Control characters) .

@ 3HIcH (Byte) MIRIEAYFZEIES (Escape Sequence) f9#fE
HIE 3 A ESC 2/4 4/1.

QEBEt+EZF, BFes aREER CCCLINGMEHE | 1 605
B3R CCCITE M —HR 4] . CCCIT BT TR 5] (& 4RES 4 f.
EREANES, REELT-HENBREFEFEISORT, FIHKTES
ISO/TC46/SCA/WGL/N.107. CCCITIERIES YA 2 ¢

O 3G EMREIENBEEFESEC 2/4 4/1.

@CCCI] MIBHEHMTEENE-RERT A FICENIEEM ERIET, HiL
CCCIT FER 3{rmi, {HCCCII MMM EZ 2l (FRES .

OmHLHE, 3fmil CCCIIEH CCCIERBIREHRE (B3
default) , MR EEFRME#DB2BIBL (FHE. WBMNE o) .

@REt+=FTH, EFREMIFTEENT XX ERER 5T
{3 CCCLIEHIHE (6] .

2 . CCCITHE S

(D42 W5 45 50

B3 B2 B1

[T—=—"1 35 33-126 |

P10 A 34 IG4 CCCLINS, B3ME(FA s /7 21nil CCCILIEF, B3E
mg2 (ERIB2, Bl) .
IR AR ES I,

DIESBIRIERER -

ioop : Accept a CCCII:
if B2=33 then
call control-code-subroutine (parameter : B1)
else begin
if 33=B3=126 and 34=B2=126 and 33=B1=126
then CCCII is a graphic code
else report error messages

end
(ACCCITHEHITERY 29 (E3T)

DA 4G FI I HE (Text Separators) : HLLIG W SCIE A EIS 2

BB . . B DRANBERAY RENPXEENXSY
BEp, .M. H., THBBASE. _

DU T R B S (Typesetting Effectors) : JH B HERREF B9 kR T X
RIRIE.

OEEL E T 4IIE (Code-fornat Switchers) : FHLA§ CCCIIHY 34Z
54075 G i 2 2 AT KL SR B AL T A |

@HEEIEGE : MRS .

) A S5y B PR PE TS
OFREESHERSAE, B, ., M. B DRAMEHEES -
- DPA (Delimiter between Parts) : ALEIZBENES " .’
. DCH (Delimiter between Chapters) : HLIIF—EoMMAH "5, .
< DSE (Delimiter between Sections) Fﬁb{ﬁ%—*ﬁﬁlﬁ%%%ﬁﬁ R

- DBL (Delimiter between Blocks/Subsections) : HILAM — 173 FS
AY TN .

. DPR (Delimiter between Paragraphs) : HIUSRS /Dby &
#w.

« DST (Delimiter between Sentences) : Hﬁuﬁj\ﬁﬁﬁ’iﬁﬁjﬂﬁ F =4

. DWO (Delimiter between Words) : FAEIAFx/@ay "i . .
OFRIEE SRR AE. B, I, ERITHEMBEE - -

« DTI (Delimiter between Titles) : HLIAME (Library) W7EE
oy TERL . o : : '

- DCU (Delimiter between Chuns) : MUK —SEIZFHmS T&, .

- DVO (Delimiter between Volumes) : FILII§—BBEEDS T,

— (1 —
+ DPG (Delimiter between Pages) : JHRAIG—IEHZSNS TE .

e DLN (Delimiter between Lines) : BRI —HIVWAEZRR "7

(23 3) 35 :E & Chun, H$FEGRoIIE .
(O Rl i S S -

. SCH (Skip one Character) : ¥i—=F¢, A T R ASCIIHISP.

- SLN (Skip one Line) : ¥h@—147, HERHEEASCITAICR/LE.

- CHS (Character Scale) : E B HFENOHH, o8 LARKSM N
BB s (ECHSZ BB M3 27 oG, HBIRB2MAFM, #
PIBIFEBY : FUNTEMAHME, HBIMERSHR33-1262H

« CSR (Character Scale Recovery) : FESHKBIEE.

. CFS (Character-font Switch) : ZR@MFMTIE (LU, R
L BeSaE) FECRSZ B MER N 3 2 oS, EB3RBEERS,
ELUBIRRFREEH (fﬁ33-126} s BISMEFT S TZ W B A KM E]

« CFR (Character-font Recovery) : Ffe{g)/E.

« CDR (Character-display Reverse) : Ot daEETHKES
EEHT, NBEEAFFESsAKES.

» CHL (Character High-light) : & ERPXFR, MEET

56 .

< HLR (High-light Recovery) : FFHg MR e/ R A LWL

) 4 IE B 12 AR 0 RS
OCCCITH 3R A 2 — —
« PSL (Plane-Shift, Locked) : FILAZERE (B3 HWEFHH

(Dfault Value) , EWMUBICCCIIE RO HEETEBS, M2
TCYRTE (BI1FNR2) s PSLZ2 B EMT M2 {rcs s (B2fnB1) , Hrb

BJE T, MAIBUEREAYEREAE. FIINJIS62260 2 B HLCCCIIy

02/ (B3=124) , LK [33] (112], 11124 B W] A CCCIT#E 25
PSL 2%
JISECH2268E, [JFER LATToH, XA33-12009EEE. Y&

34-126H9{EE &0 .

« PSR (Plane-Shift Rcovery) f¥Plane (B3) MEHFMHEZF W, (&
CCCIIEEZ‘Q%%H%@%3@%%[1@?.

« PSU (Plane-Shift, Unlocked) E3PSLINREFE{Ll, 2= RIFEPSLEI A A
WorBIEEE, MPSUEHBEM BRI —FH . ,
; : r 171247 134) (58] 10701 T
Ml (X0 (331 (114 [Y1[124) [341 (58] [33] [’?OJ 1127
PSU 2 JISC6226 18 EH £ CCCII

[(FEA1RCCCIIAE M 2 2 {2 7 48, B CCCI T 3 A7 oA Wl 35 2 A7 7T
MUSFRAIEH SR 2.

(33 51PSLIEWIME A FAPCE, R 27 nkHENAEFEFECCCIT.

— b_.._
@1 CCCT1HET 34U 7o 4 /% 4 o 25 B A yo el il — —

. SSL (Section/Plane-shift, Locked) = FHLLRE B3 B0V,
[RIiRT A $% A9 CCCLI R A BLEN] 5 SSL=2 i 28H In 2 (7o HmE (B2FIB1)
, HP2ETFEMBEEM, BIEEHEAME. FImASCIT#R &R
CCCIINI®E —mE =8 (B3=33, B2=35) , ALk
&} 1335 11151 L[35} 1331 851 RASCIIEY A", BREFEEFEII N

SSL 2% A
B 1R 23 ASCIING .

(336]— B CCCIIe 3T m M B Bl 2% . BHIESC
2/4 ANB BRI RERERD 3.

» SSU (Section/Plane-shift, Unlocked) : BISSLAR{L, {2 %% wF it
s ol
JXJ 1333 (1151, [86] 133}, (65 \(333 [70; 1123,
Ssu zH A" EEBCCCLI

OB EEHME (Layer-shift Codes) : {ECCCIIEHEEHE % 2 fIniliE Y
HHRT, AUSRE, BT, B

» LSL {(Layer-shift, locked) : FILAcR#B3EH{H , LSL2 &4 HKH
2 frcHtE (B2F1B1) H B2 %, B3=(B3 mod 6)+(B1-33)%6
, PIB1=33F% R EIE 1|, Bl=S4R "B HE2H,ccoe...

- LSU (Layer-shift, Unlocked) : HINFEERLSLIAM, {HAEIFER
. - '

MCCCIERIE R (MET)

R\C 2 3 4 5 6 7
0 DWO | SCH PSL
1 DST | SLN PSR
2 DPR | CHS PSU
3 DBL | CSR SSL
4 DSE | CFS SSU
5 DCH | CFR LSL
6 DPA | CDR LSU
7 CHL
8 DLN | HLR
9 DPG '
10 DVO
11 DCU
12 DTI
13
14
15
(FRER)
B3 : $CCCIIZ3MTm4l . B3EA33-126, EMIFMA. HCCCIIA2ITE,
B3IEHE 2 .
B2=33

B1=Cx16+R

(21

[31

(51

(61

BIFREENG, REATEE, S, PEEEE ST,
BEA+AE™A, 5. |

Chinese Character Analysis Group,Chinese Character Code for

Information Interchange, Vol. 1, Published by Library

Association of China, April 1980, Taipei.

Hsieh, Ching-Chun, et. al., "The Design and Application of
the Chinese Character Code for [nformation Interchange (
CCCII) ", International Workshop on Chinese Library
Autoﬁation, Feb. 14-19, 1981, Taipei. '

Chinese character Analysis Group, Chniese Character Code

for Information Interchange, Vol., 1], 1st ed., [Feb. 1981,

Taipei.

Chinese character Analysis Group, Chniese Character Code

for Information Interchange, Vol. II, 2nd ed., Nov. 1982,

Taipei.

FTHM, PYXERELLITN, KESKETHY, BET+

=LA

,ql
i

THE DOCUMENT REPRESENTATION AND A REFINED CHARACTER
INVERSION METHOD FOR CHINESE TEXTUAL DATABASE

Shih-shyeng Tseng*, Chen-chau Yang** and Ching-Chun Hsich***

* Computing Center, Academia Sinica,
Nankang, Taipei 11529, Taiwan, ROC

** Dept. of Electronic Eng., NTIT,

No. 43, Keelung Rd,, Sec. 4, Taipei, Taiwan, ROC
*** [nstitute of Information Science, Academia Sinica,
Nankang, Taipei 11529, Taiwan, ROC

ABSTRACT

In this paper, the explicitly context-hierarchical
organization (abbr. ECHO) and a refined character inversion
method (abbr. ARCIM) will be introduced. The ECHO is a
useful model to construct the text organization within a textual
databae. It has the abilities to provide multiple context
hierarchies for a document, a flexible search unit for retrieving
textual information, and a subrange search on a textual
database. In addition, the ECHO tree is relatively easy to
maintain. The word inversion is the retrieval method that has
been most commonly used in English textual databases. Its
advantages are that it is relatively easy to implement and is
fast. However, the word inversion is not suitable for accessing
Chinese texts; instead, the character inversion is possible.
ARCIM can retrieve texts faster and use smaller storage
overhead than the original character inversion method.

1. THE CHARACTERISTICS OF TEXTUAL DATA

The differences between a conventional database and a
textual database, which discussed in [1] and [2], can be summarized
as follows. The conventional database and the textual database
deal with retrieval and manipulation of formatted data (records)
and textual data (documents), respectively. And the formatted
records differ from the text environment in the structure of data,
the query language, and operational requirements such as update
frequency and size of database. In [1] and [2], 2 document is

~ considered as a non-structured -data consisting of an arbitrary

number of words. This discussion is not true at all. The document

is also a structured data though its structure is not similar to the

sturcture of formatted records.

The structure of document is hierarchical [3] In general, there
are a unique content structure and at least one typesetting structure
embedded in a document. The content structure, an important
constituent to represent the conceptual skeleton of document, is
conceived as a tree-like structure having distinct levels of text
elements such as document, chapter, section, subsection,
paragraph, etc. An example of content structure is shown in Figure
L. The typesetting structure of a text reflects its positioning in a
representation medium. For example, a page forms the
representation unit of the document contents. A number of pages
constitute a set which may be a chapter, a preface, or a table of
contents, as shown in Figure 2. A document may have more than

document (book)

chapter chapter
/ /\
section L ’ seqﬁion

.
A ’
. s

subsection ...ccc0000000 subsection

.
\ .

paragraph ’ paragraph

Figure 1 An example of content structure

one typesetting structures, in which each structure represents the
prositioning in an individual medium and for an individual version.

From the viewpoint of formalism, both the content structure
and the typesetting structure are hierarachies of contexts. A
context is defined as a piece of text or the whole text within a
document, with the property of hierarchy. That is, any context
must be fully contained in a higher-level context, except the root
context which denotes the whole document. It is apparent that a
leaf context does not contain any lower-level context. The context
hierarchy of a document can be realized as a tree structure, called
context tree, in which each node denotes a context of the
document. The context tree has the following properties.

(1) The node B is a descendant of the node A if and only if the

context B is wholly contained in the context A.

) Forany node, the number of children is not constant. That is, a
context contains a variable number of lower-level contexts.

(3) For any context, its length is not constant.

(4) For any node, the order of its children cannot be changed.

(5) If node B, , By., ..., B,, are children of the node A, then the

length of context A is the sum of the lengths of contexss By, B,,

B,

In addition, the context trees in a textual database, in which
each context tree represents a document, can be grouped into a
larger context tree by adding a dummy root or a dummy higher
context tree beyond all the original context trees. The original
context trees then become the subtrees of the new larger context
tree. In this case, the properties of the context tree, discussed
above, also hold.

2. THE ECHO MODEL

B

document (book)
— \

cover Page front part contents part " rear part
N . ‘
title preface table of chapter ... chapter appendix index
page pages contents // : pages pages
page /
title normal
page pages
Figure 2:- An example of typesetting. structure
a
(1,929)
b1*"’”'———’—';;i:::::::::::::::;;—’X;\\\\\\\\\\\\\\\\\\\\\‘\‘~b4
(1,18) (19,354) (355,749) (750,929)
c1 c2 c3///////;[\\\\\\\c5 cs///A\\\c7

(19,30) (31,354)

7
ar~~ a3 as a4

(355,370) (371,558) (559,749)

ds

(750,760) (761,929)

d6\\\\\\\d7 as “as

(31,39) (40,144) (145,354) (371,385) (386,558) (559,568) (569,749) (761,769) (770,929)

Figure 3

The contexts are the constituents for retrieving textual
information. For example, we always inquire which documents,
which paragraphs, or which pages contain the terms that we
concerned. In order to provide a necessary mechanism, the texts in
a textual database have to be drganized as a context hierarchy.
There are two possible methods to implement the context
organization : implicit representation and explicit representation.
They will be discussed in the following subsection.

2.1 THE ECHO TREE

In the implicit representation, a set of specific context
delimiters such as described in [4], must be inserted into the text in
order to identify each context. A context is then surrounded by a
pair of beginning and ending delimiters. The text scanner can thus
be used to find the beginings and ends of contexts. In addition, a
higher-level context which contains the current context or a lower-
level context which is contained in the current context can also be
searched by scanning the text forward and backward. The
advantages of the implicit representation are : the context
organization is simple, requires no space overhead, and is easy to
maintain. However, the price paid is the bad response time.

“Instead of using the embedded context delimiters, the explicit
representation uses an additional context tree to reflect the context
organization of a document {5]. In the context tree, each node
which denotes one context of the document has a name (or
number) and a pair of pointers which point to the beginning and
ending positions of the context, respectively. The pathname of a
node, which is the list of node-names from the root to this node, is
referred as the context-id of the context that it deontes. Suppose
that the context-id of the context N, is Ny N, ...N, . A sublist of
this context-id, say Ny N, ... N;, i<k, is called a proper prefix of the
context-id Ny N, ...N; . If a context N; with the context-id Ny N,
-..N; ‘which is a proper prefix of the context-id of the context N, ,
then the context N; is one of the ancestors of the context Ny . An

An example of context tree

example of the context tree is shown in Figure 3. By means of the
context tree, the beginning and end of a context are easily located
when the context-id is given. The higher-level and lower-level
contexts of the current context are also easy to search. In addition,
some sohpisticated retrieval methods can be applied to impove the
retrieval performance. The disadvantages of the explicit
representation are that it requires space overhead for storing the
context trees, and the number of O(n) nodes must be maintained
when a context is updated, where n is the number of nodes in a
context free.

The ECHO (explicitly context-hierarchical organization) is an
modified explicit representation. It is proposed in order to reduce
the maintenance cost. Instead of the absolute addressing scheme
used in the original explicit representation, the ECHO uses a
relative addressing scheme. In the ECHO tree, each node has a
name (or number) and a vector (D,L) which replaces the pair of
pointers discussed above. The. D denotes the distance between the
beginning position of the current context and the beginning position
of the parent context of this context. For the root, D is set to value
“1*. If a node is the leftmost child of its parent, then the D-value of
this node has to be set to value “0” [from the property(5) of the
cnotext tree, which was discussed in Section. 1]. The L denotes the
length of the current context. Except the leaf contexts, the L-value
of a given context is the sum of all the L-values of its children, ie.,
the property(5) of the context tree. An example of ECHO tree
which is equivalent to the context tree shown in Figure 3, is shown
in Figure 4.

2.2 THE OPERATIONS ON ECHO TREES

The operations on ECHO trees can be classified into
three types : (1) the search functions, (2) the tree-constructing
operations, and (3) the tree-updating operations.

2.2.1 The Search Functions

ff;}

5

i b A9 BB 4

- The Algonthm‘
- context in the con

a

(1,929)

bl///b/r\m . .

(0,18) - (18,336) (354,395) (749,180)
cl c2 c3 c4 c5 c6 c7
(0,12) (12,324) (0,16) (16,188) (204,191) (0,11) (11,169)
di az das a4 as ‘de” a7 as -dg L
(0,9)(9,105) (114,210) (0,15) (15,173) (0,10) (10,181) (0,9) (9,160)- ~— ~
Figure 4 The ECHO tree corresponding to the context tree shown in Figure 3

The ECHO model provides two search functions : (1) find
a context by giving its context-id, and (2) find the contexts which
contain a text by giving its beginning and.ending pointers. For the
first search function, the context can be accessed by means of its
beginning and edmg positions. Let the context-id of the context N
be N; N, ...N; . The beginning position, denoted BP(x), and the
ending posmon, d\,noted EP(x), of the context N, can be derived
by the Formula-1 and Formula-2.
[Formula-11 BP(N), }=D(N;)+D(N,)+...+D(N,)
[Formula-2) EP(N,)= BP(Nk V+L(N,)1
Where D(x) and L(x) denote the D-value and L-value of the
context, respectively. Let’s take the context d—, shown in Figure 4
as an example. The context-id of d; is ab; cg d, thus
BP(d;)=D(a)+D(by)+D(cs)+D(d;)=1+354+204+10= 569,

and

EP(d;)=BP(dy)+L(d;)-1=569+181-1 =749.
The vector (569,749) is the same as the pointers-pair of the context
d, , shown in Figure 3.

For the second search function, suppose a text T with the
begmmng position, BP(T), and the ending position, EP(T), are
given. This search function can be considered as to find two

contexts, denoted CI and C2; such that C1 “contains® BP(T) and-

C2 “contains” EP(T); that is,
BP(CH<BP(T)<EP(CI) and
BP(C2)<EP(TYXEP(C2). © *

And then all the contexts from Cl to C') are retured as the result.
2.2.2 The Tree-contstructing Operations

The tree-constructumg operations inculde (1) to construct
the ECHO tree from a given document, and (2) to combine a
number of ECHO trees to form a larger ECHO tree. In order to
construct the context trees from a given document, a set of markup

symbols must be inserted into the document. And then a context

parser scans this markupped document to recognize each markup,
symbol and construct the context tree [5]... The details of the
markup symblos and'markup rules can be found in [3] [5] and [6].
The context parser is t
Thus we assume that the context tree of a document is constructed
by the context parser, and the length of each leaf context is known,
> used to compute the vector (D, L) of each

ECHO tree.

Algorithm-1: Compute the vector (D L)of each context.

Given: A context tree and the length of each leaf context.

Procedure; Let D(roof)=1 and then traverse the context tree in post
order: (1) If the context visited X is the lefimost child of
its parent, then let D(X) 0; else let D(X)= D(Y)+ L(Y),

where Y denotes the nearest left sibling of X. (2) If the
context visited X is not a leaf context, then let
LX)=D(Z)+L(Z), where Z denotes the —context last
visited (L.e., the rightmost child of X).

The combu'ung of a number of ECHO threes can be considered

as the concatinating of texts. The internal structure and the length -

of each text are still the same, but the positions of those texts’ |-
except the first text are changed Suppose there are a number of k. -
ECHO trees combined into a larger ECHO tree, the root of each
original ECHO tree is denoted H;, I<i<k, correspondmg with thel:
sequence in the combination. The combining operation. is thcn

provided by the Alogrithm-2.
Alogrithm-2: Combine k individual ECHO trees into a larger one.

Step-1: Create a new root context R, and then link the root-of each :

original ECHO tree to R.

Step-2: Let D(R)=1 and let L(R)=L(H,)+ L(H,) +....+ L(H,).

Step-3: Fori=2to kdo D(H;)=D(H; ;)+ L(H, ;)
Step-4: Let the first text be the result texL

Step-5: For i=2 to k do append the i-th text to the result text andfomz N

a new result text.
2.23 The Tree Updating Operation B

The maintenance of a database involves insertion
deletion, and modification. 'The ECHO tree of a document {or
textual database) has to be updated when any of the following
situations occurred : (1) a new context (or document) is inserted

into the document (or database), (2) an old context (or document) '
is deleted from the document (or database), and (3) a context of .. -

the document is modified. In addition, the retrieval organization
such as the character index table and the posting lists table, which
will be discussed in Section 3, may also be updated when the

_contents of document (or textual database) is changed.

Before the insertion is made, a new context (or document), say"

. X, must be prepared with that all the necessary markups are

- available, The msemon operation is then executed, consxstmg of--f:‘ '

too complicated ‘to discuss in this paper.

tree and then tranfer the context tree into'an ,

two phases :
(1) Parsing phase : The ECHO tree of X is built by means of the
constructing operation as discussed in Subsection 2.2.1. ©
(2) Insertion phase : The context (or document) X is then msened
into the designated position on the document (or database) H.
At the same time, the ECHO tree X as a subtree, also has o)
inserted into the corresponding location on the ECHO tree H
and forms an extended tree H: At last, some of (D,L) vectors
on H’ must be updated discussed as follows.

After the text X is inserted into the H, the following situations ~
occur : (1) the positions of all the right siblings of X are moved
right L(X) from the original positions, (2) the lengths of all the ‘

ancestors of X, say Y for any, are increased by L(X), and (3) the
positions of all the right siblings of Y are moved right L(X) from
the original pesitions. These situations must be reflected when the
subtree X is inserted into the ECHO tree H. That is, the (D,L)
vectors of the corresponding nodes must be then updated.

When a context (or document) X is deleted from the document
(or database) H the following situations will occur : (1) the
positions of all the right siblings of X are moved left L(X) from the
original positions, (2) the lengths of all the ancestors of X, say Y
for any, are decreased by L(X), and (3) the positions of all the right
siblings of Y are moved left L(X) form the original positions.

The modification of a context is actually-realized by modifying
some leaf contexts of it, say X for any.- We call the modified leaf
context X’. The modification of X may cause the change of L(X),
te, LECYHL(X). Thé ECHO tree of the original document (or
database) need not to be updated if L(X")=L(X). But the ECHO

tree must be updated when L(X')#I{(X). The Alogrithm-3 .

ustrates the modification operation on the ECHO trees.

Alogrithm-3: Update the ECHO tree H when a leaf context X is .

modified and L(X)#L(X").

Step-1: Replace the L(X) by L(X").

Step-2: For each right sibling of X, called Z, let D(Z)=D(Z)- LX)+
LX)

Step-3: For each parent of X, called Y, let L(Yy=L(Y)-L(X)+
LX) And for each right sibling of Y, called W, let
D(W)=D(W)-L(X) +L(X’) |

Suppose the number of contexts on an ECHO tree H is N, and
the height of H is log N. The number of nodes from the root to any
leaf context is then log N. Therefore for any leaf context X, the
number of nodes inculding node X, all the right siblings of X, all

the ancestors of X, and all the right sibilings of the ancestors of X,

is O(log N). Tt is suitable to conclude that only O(log N) nodes of

an ECHO tree have to be updated when a context is inserted,
deleted, or modxﬁed

3. A REFINED CHARACI‘ER INVERSION METHOD FOR :

CHINESE TEXT

The retneva] methods for text can be classxﬁed into five
categories : full text scanning, inversion of terms, multiattribute
hashing, signature files, .and. clustering [1,7}. . The following
discussion for inversion method is summarized from [1], [7], and
[8]. The inversion method for English text uses an index in which
each entry conssists of a word along with. a list of pointers, called
posting list. These pointers point to the contexts that contain this
word. The advantages of the word inversion. are that it is relatively
easy to implement, is fast, and provides synonyms easily. For these
reasons, the word inversion has been adopted.in most commercial

-systems such as BRS, DIALOG, ‘MEDLARS, ORBIT and
 “STAIRS [8]. But the disadvantages of the word inversion are : (1)
. the storage overhead (50-300% of the original file size [97), (2) the
~ cost of updating and reorganizing the index, if the environment is
dynamic, and (3) the cost of mergmg th uig lists, if they are
- toolongor too many. -
: However, the word inversion is not suxtable for Chinese text
because (Da Chmese character siring does not contain any natural
delumters, such as ‘blanks in an Enghsh sentence, to separate
Chinese words, and (2) an effective and automatic word
. segmentation method for Chinese sentences has not been derived.
Thus we use character inversion instead of word inversion to access
Chinese -text. In the following, a. refined. character inversion
method (abbr. ARCIM) will be introduced. It can provide a faster
access speed and needs smaller storage overhead than the

conventional character inversion method. Besides, it can reduce
the cost of updating the index table and the posting lists table.

3.1 THE SEARCH OPERATION ON ARCIM

Similar to the word inversion used in English text, the ARCIM
uses a character index table, called CIT, and a posting. lists table,
called PLT, as shown in Figure 5. An entry of the PLT, denoted
PL(C,), is a posting list consisting of a variable number of
context-id’s, in which these context-id’s are always kept sorted.
Each context-id of the PL(C;), say X for any, means that the
context X contains the character C; . In the CIT, each entry
consists of a count and a pointer, denoted count{(C;) and
pointer(C;), respectively. The pointer(C;) points to the starting
location of the corresponding PL(C;) and the count(C;) denotes
the number of context-id’s of this PL(C;). If -there exists a
character C; which does not appear in any context, the count(C)
and the pointer(C,) will be set to zero and nll, respectively, and no
PL(C) will appears in the PLT. If there exists a character C,
which appear in most contexts, say more than a predefined
threshold ratio 1% to the total number of contexts in the database,
then the count(C,) and pointer(C,) are set to -1 and ni,
respectively. And the PL{C,) must be then removed from the
PLT. The size of the CIT is constant since the number of Chinese
characters used in a computer system must be limited to a
constant. Thus the CIT may be permanently located in the main
memory as a system table. When a character C;. is given, the
count(C;) and pointer(C;) can be accessed by meais of a specific
hash function which depends upon the coding scheme of the
Chinese characters. An example of the hash function can be found

in {10}

The ARCIM can provide an abﬂlty of free term search. The
followings are rules for search expressions.
<search-expression>.:= <phrase > {OR <phrase>}
<phrase>::= <term> {AND [NOT] <term>} :
<term>:= <siring> | <wild-card-tenn> | <ordered -term> "

Where <....> denotes a token, [...] denotes an optional item, {....}

11,7 denotes a'repetition of any times, and the verticle bar. means “or™.. - ..

By applying the Alogrithm-4, a given search expression can be

evaluated ‘and then a set of contexts which satisfy this expression

will be obtained.

Algorithm-4: Evaluate a given search expression by means of a

bottom-up. and greedy manner and then obiain a set of contexts

which satisfy this expression.

Step-1: Partition the search expression into a set of pluuses

Step-2: Reconstruct each phrase which is obtained form Step-1.

Step-3: For each-reconstructed phrase, perfonn the character-level
search operations and AND-merge operations to obtain a

posting list on the phrase level
. CIT | : : oo PLT

count (C1) pointer(Cl)—//

— | PL(C1)
count{C2) {pointer(C2)—— '

: : o poPL(C2)
count (Ci} |pointer (Ci)- . s

s : FPLeiy

Figure 5 The index organization of ARCIM

" Step-4: OR-mierge all phrase-level posting lists to obtain a posting list

as result.
Step-5: In posting list thus obtained, scan each context and remove
the contexts which don't satify the original search expression.
The Step-2 is an important step. To evaluate a reconstructed
phrase needs less posting lists and less AND-merge operations
operations than the evaluation of the original phrase. Hence, this
will reduce the time consummed in the Step-3. The algorithm for
Step-2 is shown as follows.
Algorithm-5: Reconstruct a given phrase.
Step-1: Eliminate every tenm which follows the “NOT” operator and
" all operators from the given phrase.
Step-2: Eliminate repeated characters.
Step-3: If there is any character C; with count(C;)=-1, delete it.
Step-4: Sort the remaining characters in nondecreasing order of
counts.
The reconstructed phrase, say b; b, ...b, (each b,
denotes a character) has the following properties.
1)y tb; forif. .
2) count(b)Scount(b;) for i<.
(3) PL(b; b,..b;)= PL(bI NPL(b; .. NPL(b;) for I<i<k
(4) PL(b, b, --~b/< YCPL(by by...by ;) C...CPL(by).
(5) count(b,)=0 implies PL(b;)=@ imples PL(b; b,b,)=0.
The properties mentioned above are very important to the
Step-3 of the Alogrithm-4. According to the property(5), if
count(b;)=0, we rather immediately let the phrase-level posting
list be null than apply the Step-3 of the Alogrithm-4. According to
the property(4), if count(b;) count(b;)#0 we search PL(b,) and
PL(b,) and AND-merge them first, then search PL(b;).

» 1<igk,

3.2 CREATION AND MAINTENANCE ON PLT AND CIT

In order to provide the ARCIM as the underlying retrieval
mechanism, the PLT and CIT must be created while a Chinese
textual database is built. The Algorithm-6 can be used to create
the PLT and CIT when the text files and the ECHO tree are

. available.
. Algorithm-6: Create the PLT and CITﬁ'om the text files and the
" ECHO tree.

Step-1: Create an initial CIT in which the number of entries must be
equal to the number of Chinese characters used in the

computer system as well as for each ensry let count(C;)=0

and pointer(C;) =nil.
Step-2: For each leaf countext X do -
(1) eliminate all blanks, punctuation symbols, and other
unnecessary symbols, the remainds are called X’;

(2) eliminate all repeated characters from X', the remainder

are called the character list of X.

“Step-3: For character list of Ieaf 'com‘eer append the context-id X to

contexi-id list of X.

. Step—4 According to the sequence fmm the smallest context-id to the

largest context-id, concatenate all the: character context-id
lists. The result is called:the chamcter context-id lists table.

k Step-5: Sort the character context-ig. lists table by a nondecreasing

-+ 'sequence of the character codes. - The result is called the
©initial PLT. A segment of the initial PLT in which each entry
""has the same character C; and different comext id is called

the initial PL(C;).

1 Step-6: Scan the initial PLT to ﬁnd lhe starting address (zn number of

. entries) of each initial PL(C;) and compute the count(C;).
If the value of count(C; }/Q is more than a predefined threshold
ratio t, then let count(C;)=-1 and pointer(C;)=nil, where Q

3

denotes the total number of leaf contexts. In this case, remove the

initial PL(C;) from the initial PLT. Write the couny(C;) and

pointer(C;) into the corresponding entry of the-initial CIT. During
the scanning, delete the character field from each entry of the
initial PLT.

The CIT and PLT must be updated when a context is inserted,
deleted, or modified. The Algorithm-10, -11, and -12 describe the
update operations for the case of insertion, deletion, and
modification, respectively.

Algorithm-7: Update the CIT and PLT when a leaf context X is

inserted into the database.

Step-1: Consiruct the character list of X by means of Step-1 of the
Algorithm-6. And then sort this list by an ascending order of
character codes. Suppose the characters within tlze sorted
character listare b, b,b,..

Step-2: Insert the context-id X into each PL(b;), 1<i<k keepmg the
ascending order of context-id’s on each PL(b;).

Step-3: Scan the CIT from the character by to the last. Suppose the
character that currently be sacnned is a. If a=b;, I<i<k,
then let count(a)= count(a)+1. If b; <a<b; , I<i<k, then
let pointer(a)=pointer(a)+i. For each-a. >bk ;. det
pointer(a) =pointer(a)+k ‘

Algorithm-8: Update the CIT and PLT when a Ieaf cont&xt X is

deleted from the database.

Step-1: Same as the Step-1 of the Algorithm-7. - =00

Step-2: Delete the context-id X from each PL(b;), 1<1<k. ;

Step-3: Scan the CIT from character b; t0 the last. “Suppose the
character currently scaned is o If a=b;, 1<i<k; let count(a)
= count(a)-l. If b; <a<h; ., , 15i<k, let pointer(a) =
pointer(a)-i. For each a >b,, let pointer(a) = pointer(a)-k

Algorithm-9: Update the CIT and PLT when a leaf context X is

modified.

Step-1: Construct the character lists of the old context and of the new
context, respectively. Then sort these two character lists by
ascending order of character codes. As a convertion, we call
the sorted character lists- of old context and new context
CL(X) and CL(X’), respectively. "'

Step-2: Compare CL(X) with CL{(X') to obtam a stnng b 7 b
CL(X)-CL(X) and a string d; d,d =CL(X)- CL(X ').
The string b, b,b, here denotes the characters that are

inserted into X, while the string d, d2 d denores the
characters that are deleted from X.

Step-3: Apply the Step-2 and -3 of the Algorzthm 7 for t/ze smng bl b2

by

Step-4: Apply the Step-2 and -3 of the Algontlun-8 for the smng d 1 45

'"di'

4. CONCLUSION

The followmg are the advamages of the ECHO model

(1) Multiple'context hierarchies of a document can-be provided by
the :ECHO model, for example, comext structures and
typesetting structures.

(2) Any level of contexts can be localed by menas of the ECHO
tree.- Thus the ECHO has the ability to provxde a ﬂexxhle unit
for retrieving the textual information;’ :

(3) The ECHO can do subtree search to speed up the retneval
performance. In other words, users can specxfy 4 subset of the
database as the search range.

(4) The ECHO tree is relatively easy to mamtam There are just
O(log n) modes of an ECHO tree to be updated when a
context is inserted, deleted, or modified, where n 'is the
number of nodes in an ECHO tree.

Step-4: OR-merge all phrase-level posting lists to obtain a posting list
as result.
Step-5: In posting list thus obtained, scan each context and remove
the contexts which don't satify the original search expression.
The Step-2 is an important step. To evaluate a reconstructed
phrase needs less posting lists and less AND-merge operations
operations than the evaluation of the original phrase. Hence, this
will reduce the time consummed in the Step-3. The algorithm for
Step-2 is shown as follows.
Algorithm-5: Reconstruct a given phrase.
Step-1: Eliminate every tenm which follows the “NOT" operator and
~ all operators from the given phrase.
Step-2: Eliminate repeated characters.
Step-3: If there is any character C; with count(C; }=-1, delete it.
Step-4: Sort the remaining characters in nondecreasing order of
counts.
The reconstructed phrase, say by b, ...b, (each b, ,
denotes a character) has the following properties.
(1) b; #b; forip. .
) coum(b)<couns(b;) for i<j.
(3) PL(b; b,...b;)= PL(b1 INPL(b; N.. NPL(b;) for I<i<k
(#) PL(b, b, ...bk YCPL(b; by..by ;) C...CPL(b;)
(5) count(b; Y=0 implies PL(b, Y= imples PL(b; b, ...b,)=@.
The properties mentioned above are very important to the
Step-3 of the Alogrithm-4. According to the property(5), if
count(b;)=0, we rather immediately let the phrase-level posting
list be null than apply the Step-3 of the Alogrithm-4. According to
the property(4), if count(b;) count(b;)#0 we search PL(b,) and
PL(b,) and AND-merge them first, then search PL(b;).

I<i<k,

3.2 CREATION AND MAINTENANCE ON PLT AND CIT

In order to provide the ARCIM as the underlying retrieval
mechanism, the PLT and CIT must be created while a Chinese
textual database is built. The Algorithm-6 can be used to create
the PLT and CIT when the text ﬁles and the ECHO tree are

..-available.
. Algorithm-6: Create the PLT and CIT ﬁvm the text files and the
*"ECHO tree.

Step-1: Create an initial CIT in which the number of entries must be
equal to the number of Chinese characters used in the

_ computer system as well as for each entry let count(C;)=0

and pointer(C;)=nil.
Step-2: For each leaf countext X do
(1) eliminate all blanks, punctuation symbols, and other
unnecessary symbols, the remainds are called X;
(2) eliminate all repeated characters from X', the remainder
are called the character list of X.

* Step-3: For ¢haracter list of leaf context X; append the context-id X to

each character of this lzst the result is called character
context-id list of X. 71

largest context-id, ‘concatenate all ‘the: character context-id
lists. The result is called the character context-id lists table.

Step-5: Sort the character context-id Iuts table by a nondecreasing

- sequence of the character codes. The result is called the
initial PLT. A segment of the initial PLT in which each entry
" has the same character C; and dzﬁerem context-id is called
, the initial PL(C;). .
Step-6: Scan the initial PLT to find the starting address (in number of
entries) of each initial PL(C;) and compute the count(C;).
If the value of count(C;)/Q is more than a predefined threshold
ratio t, then let count(C;)=-1 and pointer(C;)=nil, where Q

. Step-4 According to the sequence fmm the smallest context-id to the b‘

/4

denotes the total number of leaf contexts. In this case, remove the
initial PL{C; } from the initial PLT. Write the count(C;) and
pointer(C;) into the corresponding entry of the-initial CIT. During
the scanning, delete the character field from each entry of the
initial PLT. -

The CIT and PLT must be updated when a context is inserted,
deleted, or modified. The Algorithm-10, -11, and -12 describe the
update operations for the case of insertion, deletion, and
modification, respectively.

Algorithm-T: Update the CIT and PLT when a leaf context X is
inserted into the database.

Step-1: Construct the character list of X by means of Step-I of the

Algonithm-6. And then sort this list by an ascending order of
character codes. Suppose the characters within the sorted
character list are by b, ..

Step-2: Insert the context-id X mto each PL(b;), I<i<k, keepmg the
ascending order of context-id's on each PL(b;).

Step-3: Scan the CIT from the character b, 1o the last. Suppose the
character that currently be sacnned is a. If a=b; , I<i<k
then let count(a)= count(a)+1. Ifb; <a<h;,,, I<i<k then
let pointer(a)=pointer{a)+i. For each a >bk . let
pointer(a)=pointer(a)+k L :

Algorithm-8: Update the CIT and PLT nhen a leaf comext X s

deleted from the database.

Step-1: Same as the Step-1 of the Algorithm-7. -+ i

Step-2: Delete the context-id X from each PL(b;), I<1<k. :

Step-3: Scan the CIT from character b} to the last. Suppose the
character currently scaned is . If a=b;, 1<i<k; let count(a)
= count(a)-l. If b; <a<b;, ,;, I <k, let poirnter(a) =
pointer(a)-L. Foreach a >b,, let pointer(a) = pointer(a)-k

Algorithm-9: Update the CIT and PLT when a leaf context X is

modified.

Step-1: Construct the character lists of the old context and of the new
context, respectively. Then sort these two character lists by
ascending order of character codes. As a convertion, we call
the sorted character lists of old context. aml new. contexr
CL(X) and CL(X"), respectively. .

Step-2: Compare CL(X) with CL(X) to obtam a strmg b, 1 b2 bk

CL(X"\-CL(X) and a string d, dy ...d; =CL(X)-CL(X").
The string b; b,b, here denotes thc characters that are
« inserted into X, while the string dl dz d denotes the

characters that are deleted from X. X
Step-3: Apply the Step-2 and -3 of the Algontlm1 7 for the smng b 3 b >

Step-4: Apply the Step-2 and -3 of the Algontlun-8 for l/le string d 5 d B

...dj.

4. CONCLUSION

The followmg are the advantages of the ECHO model .

(1) Multiple context hierarchies of a document can be provided by
the :\ECHO. model, for example, context structures and
typesetting structures. - |

(2) Any level of contexts can be located by menas of the ECHO
tree. Thus the ECHO has the ability to prov:de a ﬂexlble unit
for retrieving the textual information:’

'(3) The ECHO can do subtree search to Speed up the retneval

performance. In other words, users can spec;fy a subset of the
database as the search range.

(4) The ECHO tree is relatively easy to mamtam There are just
O(log n) modes of an ECHO tree to be updated when a
context ‘is’ inserted, deleted, or modified, where n is the
number of nodes in an ECHO tree.

(5) A sophisticated retrieval method such as character inversion is
. easy to attachg to the ECHO model. -
In addition, the ECHQ.model is language independent. That i is, it
-is suitable for representing the context structures of documents in
any language. © - - 7

The major factors of-the access performance of an inversion
method are AND-merge and OR-merge operations. The ARCIM
can reduce both the number of AND-merge operations and the
total length of posting lists invoked by AND-merge operations.
Thus, the ARCIM can improve the access performance by a
conventional character inversion method. Besides, the ARCIM
needs less storage overhead than” a conventional ch:tacter

inversion method. - . .

REFERENCE

1. Faloutsos, C., “Access Methods for Text”, ACM computing
Surveys, Vol. 17, No. 1, March 1985, p.p.49-74.

2. Ozkarahan, E., Database Machines and Database Management,

- Reading, ISBN 0-13-196031-8, Ch. 12, “Document Retrieval”,
Prenice-Hall, Inc., New Jersey. .

3. Peels, A. J. H M, -Janssen, N. J. M., and Nawijn, W,
“Document Architecture and Text Formatting®, ACM
Transactions on Office Information Systems, Vol. 3, No. 4,
October 1985, p.p.347-369.

4. Emrath, P. A., Page Indexing for Texzual Information Retrieval
Systems, Ph. D. Thesis, Umv of Illinois at Urbana—Champann,
1983.

5. Hsieh, C. C. etal, The Design and Implementatzon on the
Chinese Full-text ~Processing System, Chinese Publication,
Computing Center, Academia Sinica, Sept. 1986.

6. 1SO, Draft International Standard ISO/DIS 8879, Information
Processing—Text and Office Systems—Standard Generalized
Martaip Language (SGML), “International Organization for
Standardization, Geneva,; Switzerland, Oct. 1985.

. 7. Faloutsos, C., and: Christodoulakis, S., “Signature Files : An

{: Access Method for Documents and Its Analytical Performance .

: Evalusion”, ACM. Transactions. on . Office Infonnatwn Systems ‘
: V012,N040ct.1984 p.p. 267-288.
8. Salton, G. and McGill, M. 1., Introduction to Modern Informatzon
Retrieval, McGiraw-Hill, New York, 1983,
9. Haskin, R. L., “Special-purpose Processors for Text Retrieval®,
Database Engineering, Vol. 4, No. 1, Sept. 1981, P.P. 16-29.- ‘
10. Tseng, Shih-shyeng, The Design and Implementation of the
Chinese = Character - Characteristics Database, Chinese
Publication, Master Thesis, National Taiwan Institute of
Technology, Taipei, Taiwan, June 1982.

JAS

