THE DOCUMENT REPRESENTATION AND A REFINED CHARACTER
INVERSION METHOD FOR CHINESE TEXTUAL DATABASE

Shih-shyeng Tseng®, Chen-chau Yang** and Ching-Chun Hsieh***

" Computing Center, Academia Sinica,
Nankang, Taipei- 11529, Taiwan, ROC

** Dept. of Electronic Eng., NTIT,

No. 43, Keelung Rd.,, Sec. 4, Taipei, Taiwan, ROC
*** Institute of Information Science, Academia Sinica,
Nankang, Taipej 11529, Taiwan, ROC

ABSTRACT

In this paper, the explicitly context-hierarchical
organization (abbr. ECHO) and a refined character Inversiof
method (abbr. ARCIM) will be introduced. The ECHO is a
useful model to construct the text organization within a textual
databae. It has the abilities to provide multiple context
hierarchies for a document, a flexible search unit for retrieving
textual information, and a subrange search on a textual
database. In addition, the ECHO tree s relatively easy to
maintain. The word inversion is the retrieval method that has
been most commonly used in English textual databases. Its
advantages are that it is relatively easy to implement and is
fast. However, the word inversion is not suitable for.accessing
Chinese texts; instead, the character inversion is possible.
ARCIM can retrieve texts faster and use smaller storage
overhead than the original character inversion method.

L. THE CHARACTERISTICS OF TEXTUAL DATA

The differences between a conventional database and a
textual database, which discussed in [1] and [2], can be summarized
as follows. The conventional database and the textual database
deal with retrieval and manipulation of formatted data (records)
and textual data (documents), respectively. And the formatted
records differ from the text environment in the structure of data,
the query language, and operational requirements such as update
frequency and size of database. In {1} and {2, a document is
considered as a non-structured data consisting of an arbitrary
number of words. This discussion is not true at all. The document
is also a structured data though its structure is not similar to the
sturcture of formatted records.

The structure of document is hierarchical [3) In general, there
are a unique content structure and at least one typesetting structure
embedded in a document. The content structure, an important
constituent {0 represent the conceptual skeleton of document, is
conceived as a tree-like structure having distinct levels of text
elements such as document, chapter, section, subsection,
paragraph, etc. An example of content structure is shown in Figure
1. The typesetting structure of a text reflects its positioning in a
representation medium. For example, a page forms the
representation unit of the document contents., A number of pages
constitute a set which may be a chapter, a preface, or a table of
contents, as shown in Figure 2. A document miy have more than

document (book)

chapter chapter
/ \ 7 \
section ’ section
subsection' subséction
N
paragraph‘ ’ paragraph

Figure 1 An exanple of content structure

one typesetting structures, in which each structure represents the

prositioning in an individual medium and for an individual version.
From the viewpoint of formalism, both the content structure

and the typesetting structure are hierarachies of contexts. A

context is defined as a piece of text or the whole text within a

document, with the property of hierarchy. That is, any context

must be fully contained in a higher-level context, except the root

context which denotes the whole document. It is apparent that a

leaf context does not contain any lower-level context. The context

hierarchy of a document can be realized as a tree structure, called
context tree, in which each node denotes a context - of the
document. The context tree has the following properties. -

(1) The node B is a descendant of the node A if and only if the
context B is wholly contained in the context A.

(2) For any node, the number of children is not constant. That is, o
context contains a variable number of lower-level contexts.

(3) For any contexs, its length is not constant,

(4) For any node, the order of its children cannot be changed.

(5) If node B, By, B,, arc children of the node A, then the
length of context A is the sum of the lengilis of contexts B, B,,
e B
In addition, the context trees in a textual database, in which

each context tree represents a document. can be grouped into a
larger context tree by adding a dummy root or a dummy higher
context tree beyond all the original context trees. The original
context trees then become the subtrees of the new larger context
tree. In this case, the propertics of the context tree, discussed
above, also hold.

2. THE ECHO MODEL

document (book)

cover Page front part contents part rear part
title preface table of chapter chapter appendix index
page pages contents /// : pages pages
bage
title normal
page pages
Figure 2 An example of typesetting structure
a
(1,929)
b1"‘”ﬂ—#—#~7;;::::::::::::::%,—E\\\\\\\\\\\\\\\\\\\\\‘\b4
(1,18) (19,354) (355,749) (750,929)
cl c2 c3 “c4 cs cé c7
(19,30) (31,354) (355,370) (371,558) (559, 749) (750,760) (761,929)
d1 dz2 a3 d4. ds dé d7z ds do

(31,39)(40,144)(145,354)(371,385)(386,558)(559,568)(569,749)(761,769)(770,929)

Figure 3

The contexts are the constituents for retrieving textual
information. For example, we always inquire which- documents,
which paragraphs, or which pages contain the terms that we
concerned. In order to provide a necessary mechanism, the texts in
a textual database have to be organized as a context hierarchy.
There are two possible methods to implement the context
organization : implicit representation and explicit representation.
They will be discussed in the following subsection.

2.1 THE ECHO TREE

In the implicit representation, a set of specific context
delimiters such as described in [4], must be inserted into the text in
order to identify each context. A context is then surrounded by a
pair of beginning and ending delimiters. The text scanner can thus
be used to find the beginings and ends of contexts. In addition, a
higher-level context which contains the current context or a lower-
level context which is contained in the current context can also be
searched by scanning the text forward and backward. The
advantages of the implicit representation are : the context
organization is simple, requires no space overhead, and is easy to
maintain. However, the price paid is the bad response time.

Instead of using the embedded context delimiters, the explicit
representation uses an additional context tree to reflect the context
organization of 2 document [5). In the context tree, each node
which denotes one context of the document has a name (or
number) and a pair of pointers which point to the beginning and
ending positions of the context, respectively. The pathname of a
node, which is the list of node-names from the root to this node, is
referred as the context-id of the context that it deontes. Suppose
thitt the context-id of the context Ny is Ny Ny LN, . A sublist of
this context-id, say Ny Ny LN i<k, s called & proper prefix of the
context-id Ny N, ...N, . If a context N; with the context-id N, N,
~Nj which is a proper prefix of the context-id of the context N, ,
then the context N; is one of the ancestors of the context N, . An

‘retrieval - performance.

An example of context tfee

example of the context tree is shown in Figure 3. By means of the
context tree, the beginning and end of a context are easily located
when the context-id is given. The higher-level and lower-level
contexts of the current context are also easy to search. In addition,
some sohpisticated retrieval methods can be applied to impove the
The disadvantages of the explicit
representation are that it requires space overhead for storing the
context trees, and the number of O(n) nodes must be maintained
when a context is updated, where n is the number of nodes in a
context tree.

The ECHO (explicitly context-hierarchical organization) is an
modified explicit representation. It is proposed in order to reduce
the maintenance cost. Instead of the absolute addressing scheme
used in the original explicit representation, the ECHO uses a
relative addressing scheme. In the ECHO tree, each node has a
name (or number) and a vector (D,L) which replaces the pair of
pointers discussed above. The D denotes the distance between the
beginning position of the current context and the beginning position
of the parent context of this context. For the root, D is set to value
“1". If a node is the leftmost child of its parent, then the D-value of
this node has to be set to value “0” [from the property(5) of the
cnotext tree, which was discussed in Section 1]. The L denotes the
length of the current context. Except the leaf contexts, the L-value
of a given context is the sum of all the L-values of its children, i.e.,
the property(5) of the context tree. An example of ECHO tree
which is equivalent to the context tree shown in Figure 3, is shown
in Figure 4.

2.2 THE OPERATIONS ON ECHO TREES

The operations on ECHO trees can be classified into
three types @ (1) the search functions, (2) the tree-constructing,
operations, and (3) the tree-updating operations.

2.2.1 The Search Functions

a

(1,929)

leM

(0,18) (18,336) (354,395) (749,180)
cl c2 c3/c4Nc5 CG/\C7
(0,12) (12,324) (0,16) (16,188) (204,191) (0,11) (11,169)
dl dz2 ds3 d4 ds dé d7 ds ds
(0,9)(9,105) (114,210) (0,15) (15,173) (0,10) (10,181) (0,9) (9,160)
Figure 4 The ECHO tree corresponding to the context tree shown in Figure 3

The ECHO model provides two search functions - (1) find
a context by giving its context-id, and (2) find the contexts which,
contain a text by giving its beginning and.ending pointers. For the

first search function, the context can be accessed by means of its

beginning and eding positions. Let the context-id of the context Ny

be Ny N, ...N, . The beginning position, denoted BP(x), and the

ending position, denoted EP(x), of the context N, can be derived

by the Formula-1 and Formula-2.

{Fonmula-1) BP(N,)=D(N;)+D(N, }+.... +D(N,) T~

(Formula-2) EP(N,)=BP(N,)+L(N,)1

Where D(x) and L(x) denote the D-value and L-value of the

context, respectively. Let’s take the context dy shown in Figure 4

as an example. The context-id of dy is ab3 ¢5 dy, thus

BP(d;)=D(a)+D(b;y)+D(cs)+ D(dy)=1+354+204+10= 569,
an

EP(d;)=BP(dy) +1{d;)-1=569+ 181-1 =749,

The vector (569,749) is the same as the pointers-pair of the context

dy . shown in Figure 3.

For the second search function, suppose a text T with the
beginning position, BP(T), and the ending position, EP(T), are
given. This search function can be considered as to find two
contexts, denoted C1 and C2, such that Cl “contains” BP(T) and
C2 “contains™ EP(T); that s,

BP(CI1Y<BP(TYSEP(CI) and
BP(C2)<EP(TYKEP(C2).
And then all the contexts from C1 to C2 are retured as the result.

2.2.2 The Tree-contstructing Operations

The tree-constructuing operations inculde (1) to construct
the ECHO tree from a given document, and (2) to combine a
number of ECHO trees to form a larger ECHO tree. In order to
construct the context trees from a given document, a set of markup
symbols must be inserted into the document. And then a context
parser scans this markupped document to recognize each markup
symbol and construct the context tree [5]. The details of the
markup symblos and markup rules can be found in {31, [5] and [6).
The context parser is too complicated to discuss in this paper.
Thus we assume that the context tree of a document is constructed
by the context parser, and the length of each leaf context is known,
The Algorithm-1 can be used to compute the vector (D,L) of each
context in the context tree and then tranfer the context tree into an
ECHO tree.
Algorithm-1: Compute the vector (D,LY of each context.
Given: A context tree and the length of each leaf context,
Procedure: Let D(root)=1 and then waverse the context gee in post
order: (I} If the context visited X is the lefunost child of
its parent, then let D(X)=0; else let D(X)= D(Y)+ L(Y),

where Y denotes the nearest left sibling of X. (2) If the
context visited X Is not a leaf comtext, then let
LX)=D(Z)+L(Z), where Z denotes the context last
visited (Le., the rightmost child of X).

The combining of 2 number of ECHO threes can be considered
as the concatinating of texts. The internal structure and the length
of each text are still the same, but the positions of those texts
except the first text are changed. Suppose there are a number of k
ECHO trees combined into a larger ECHO tree, the root of each
original ECHO tree is denoted H;, I<i<k, corresponding with the
sequence in the combination. The combining operation is then
provided by the Alogrithm-2.

Alogrithm-2: Combine k individual ECHO trees into a larger one.

Step-1: Create a new root context R, and then link the root of each
onginal ECHO tree to R

Step-2: Let D(R)=1 and let L(R)=L(H)+L(H,) +....+ L(H,).

Step-3: Fori=2to k do D(H, Y=D(H.)+ L(H. ;)

Step4: Let the first text be the result text,

Step-5: Fori=2 to k do append the i-th text 1o the result text and form

a new resuly text.
2.2.3 The Tree Updating Operation

The maintenance of a database involves insertion,
deletion, and modification. The ECHO tree of a document (or
textual database) has to be upduted when any of the following
situations occurred : (1) a new context (or document) is inserted
into the document (or database), (2) an old context (or document)
is deleted from the document (or database), and (3) a context of
the document is modified. In addition, the retrieval organization
such as the character index table and the posting lists table, which
will be discussed in Section 3, may also be updated when the
contents of document (or textual database) is changed.

Before the insertion is made, a new context (or document), say

X. must be prepared with that all the necessary markups are

available. The insertion operation is then executed, consisting of

two phases : .

(1) Parsing phase : The ECHO tree of X is built by means of the
constructing operation as discussed in Subsection 2.2.1.

(2) Insertion phase : The context (or document) X is then inserted
into the designated position on the document (or database) H. ~
At the same time, the ECHO tree X, as a subtree, also has to be
inserted into the corresponding location on the ECHO tree H
and forms an extended tree H”. At last, some of {D.L) vectors
on H” must be updated, discussed as follows.

After the text X Is inserted into the H, the following situations
occur : (1) the positions of all the right siblings of X are moved
right L(X) from the original positions, (2) the lengths of all the

ancestors of X, say Y for any, are increased by L(X), and (3) the
positions of all the right siblings of Y are moved right {X) from
the original positions. These situations must be reflected when the
subtree X is inserted into the ECHO tree H. That is, the (D,L)
vectors of the corresponding nodes must be then updated.

When a context (or document) X is deleted from the document
(or database) H the following situations will occur : (1) the
positions of all the right siblings of X are moved left LX) from the
original positions, (2) the lengths of all the ancestors of X, sayY
for any, are decreased by L{X), and (3) the positions of all the right
siblings of Y are moved left L(X) form the original positions.

The modification of a context is actually realized by modifying
some leaf contexts of it, say X for any. We call the modified leaf
context X'. The modification of X may cause the change of L(X),
Le, I{X)#(X). The ECHO tree of the original document (or
database) need not to be updated if 1(X")=1(X). But the ECHO

tree must be updated when L(X)#L(X). The Alogrithm-3 .

illustrates the modification operation on the ECHO trees.

Alogrithm-3: Update the ECHO tree H when a leaf context X is. .

modified and L(X)£L(X").

Step-1: Replace the L(X) by L(X"). -

Step-2: For each right sibling of X', called Z, let D(Z)=D(Z)-L(X)
LX)

Step-3: For each parent of X', called Y, let L(Y)=L(Y)-L(X)+
L(X"). And for each right sibling of Y, called W, let
D(W)=D(W)-L(X) +L(X")

Suppose the number of contexts on an ECHO tree H is N, and
the height of H is log N. The number of nodes from the root to any
leaf context is then log N. Therefore for any leaf context X, the
number of nodes inculding node X, all the right siblings of X, all
the ancestors of X, and all the right sibilings of the ancestors of X,
is O(log N). It is suitable to conclude that only O(log N) nodes of
an ECHO tree have to be updated when a context is inserted,
deleted, or modified.

3. A REFINED CHARACTER INVERSION METHOD FOR
CHINESE TEXT

The retrieval methods for text can be classified into five
categories : full text scanning, inversion of terms, multiattribute
hashing, signature files, and clustering [1,7]. The following
discussion for inversion method is summarized from {1}, (7], and
[8]- The inversion method for English text uses an index in which
each entry conssists of a word along with a list of pointers, called
posting list. These pointers point to the contexts that contain this
word. The advantages of the word inversion are that it is relatively
easy to implement, is fast, and provides synonyms easily. For these
reasons, the word inversion has been adopted in most commercial
systems such as BRS, DIALOG, MEDLARS, ORBIT and
STAIRS [8]. But the disadvantages of the word inversion are - (1)
the storage overhead (50-300% of the original file size 91, (2) the
cost of updating and reorganizing the index, if the environment is
dynamic, and (3) the cost of merging the posting lists, if they are
100 long or too many.

However, the word inversion is not sujtable for Chinese text
because (1) a Chinese character string does not contain any natural
delimiters, such as blanks in an English sentence, to separate
Chinese words, and (2) an effective and automatic word
segmentation method for Chinese sentences has not been derived.
Thus we use character inversion instead of word inversion to access
Chinese text. In the following, a refined character inversion
method (abbr. ARCIM) will be introduced. It can provide a faster
dccess speed and needs smaller storage overhead than the

conventional character inversion method. Besides, it can reduce
the cost of updating the index table and the posting lists table.

3.1 THE SEARCH OPERATION ON ARCIM

Similar to the word inversion used in English text, the ARCIM
uses a character index table, called CIT, and a posting lists table,
called PLT, as shown in Figure 5. An entry of the PLT, denoted
PL(C;), is a posting' list consisting of a variable number of
context-id’s, in which these context-id's are always kept sorted.
Each context-id of the PL(C,), say X for any, means that the
context X contains the character C; . In the CIT, each entry
consists of a count and a pointer, denoted count(C;) and
pointer(C;), respectively. The pointer(C;) points to the starting
location of the corresponding PL(C;) and the count(C;) denotes
the number of context-id’s of this PL(C;). If there exists a
character C; which does not appear in any context, the count(C;)
and the pointer(C;) will be set to zero and nil, respectively, and no
PL(CJ-) will appears in the PLT. If there exists a character G,
which appear in most contexts, say more than a predefined
threshold ratio t% to the total number of contexts in the database,
then the count(C,) and pointer(C,) are set to -1 and nil,
respectively. And the PL(C,) must be then removed from the
PLT. The size of the CIT is constant since the number of Chinese
characters used in a computer system must be limited to a
constant. Thus the CIT may be permanently located in the main
memory as a system, table. When a character C; is given, the
count(C;) and pointer(C;) can be accessed by means of a specific
hash function which depends upon the coding’ schéme of the
Chinese characters. An example of the hash function can be found
in [10].

[Thc ARCIM can provide an ability of free term search. The
followings are rules for search expressions.
<search-expression>::= <phrase > {OR <phrase >}
<phrase>:=<tenn> {AND [NOT] <tenn>}
<term>::= <string> | <wild-card-tenn> | <ordered -term>
Where <...> denotes a token, [....] denotes an optional item, {....}
denotes a repetition of any times, and the verticle bar means “or”,
By applying the Alogrithm-4, a given search expression can be
evaluated and then a set of contexts which satisfy this expression
will be obtained.

Algorithm-4: Evaluate a given search expression by means of a

bottom-up and greedy manner and then obtain a set of contexts

which satisfy this expression.

Step-1: Partition the search expression into a set of phrases.

Step-2: Reconstruct each phrase which is obtained form Step-1.

Step-3: For each reconstructed piase, perfonn the character-level
searchoperations and AND-merge operations to obtain a
posting list on the phrase level.

CIT PLT
count (C1) pointer(ql)—//
PL(C1)
count (C2) pointer(cz)——\,_
. : PL(C2)
count (Ci) pointer(ci)\\
: PL(Ci)

Figure 5 The index organization of ARCIM

Step-4: OR-merge all phrase-level postng lists to obtain a posting list
as result.
Step-5: In posting list thus obtained, scan each context and remove
the contexts which don't satify the original search expression.
The Step-2 is an important step list. To evaluate a
reconstructed phrase needs less posting and less AND-merge
operations than the evaluation of the original phrase. Hence, this
will reduce the time consummed in the Step-3. The algorithm for
Step-2 is shown as follows.
Algorithm-S: Reconstruct a given phrase.
Step-1: Eliminate every term which Jollows the “NOT" operator and
all operators from the given phrase,
Step-2: Eliminate repeated characters.
Step-3: If there is any character G with count(C; Y=-1, delete i
Step-4: Sont the remaining characters in nondecreasing order of
counts.
The reconstructed phrase, say by by ...b, (each b,
denotes a character) has the following properties.
(1) b; #b; fori.
(2) count(b;)Scoum‘(bj Yfori<;. .
(3) PL(b; b,...b;)=PL{b; Y"PL(b, .. NPL(b;) for I<i<k -
() PL{b; b,..b, JCPL(by by..0, ;) G..CPL(b;).
(5) count(b,) =0 implies PL(b;)= imples PL(b, byub)=0
The properties mentioned above are very important to the
Step-3 of the Alogrithm-4. According to the property(5), if
count(b;)=0, we rather immediately let the phrase-level posting
list be null than apply the Step-3 of the Alogrithm-4. According to
the property(4), if count(b,) count(b,)#0 we search PL(b;) and
PL(b,) and AND-merge them first, then search PL(b;).

I<i<k,

3.2 CREATION AND MAINTENANCE ON PLT AND CIT

In order to provide the ARCIM as the underlying retrieval
mechanism, the PLT and CIT must be created while a Chinese
textual database is built. The Algorithm-6 can be used to create
the PLT and CIT when the text files and the ECHO tree are
available.

Algorithm-6: Create the PLT and CIT from the text files and the

ECHO tree.

Step-1: Create an initial CIT in which the number of entries must be
equal to the number of Chinese characters used in the
compuder system as well as for each enny let count(C;)=0
and pointer(C;) =nil.

Step-2: For each leaf countext X do
(1) eliminate all blanks, punciuation symbols, and other

winecessary symbols, the remainds are called X
(2) eliminate all repeated characters Jrom X', the remainder
are called the character list of X.

Step-3: For character list of leaf context X, append the context-id X to
each character of this list; the result is called character
context-id list of X.

Step-4: According to the sequence from the smallest context-id to the
largest corvext-id, concatenate all the character context-id
lists. The result is called the character context-id lists table.

Step-5: Sort the character context-id lists able by a nondecreasing
Sequence of the character codes. The result is called the
irutial PLT. A segment of the initial PLT in which each entry
has the same charucter G, and different context-id is called
the initial PL(C;).

Step-6: Scan the initial PLT 10 find the swarting address (in mumber of
entries) of each inirial PL(C;) and compute the count(C;).

If the value of count(C;)/Q is more than a predefined threshold
ratio t, then let count(C;)=-1 and pointer(C; }=nil, where Q

denotes the total number of leaf contexts. In this case, remove the

initial PL(C;) from the initial PLT. Write the count(C;) and

pointer(C;) into the corresponding entry of the initial CIT. During
the scanning, delete the character field from each entry of the
initial PLT.

The CIT and PLT must be updated when a context is inserted,
deleted, or modified. The Algorithm-10, -11, and -12 describe the
update operations for the case of insertion, deletion, and
modification, respectively.

Algorithm-7: Update the CIT and PLT when a leaf context X is

inserted into the database.

Step-1: Construct the character list of X by means of Step-J of the
Algorithin-6. And then sort this list by an ascending order of
character codes. Suppose the characters within the sorted
character list are byby...b,.

Step-2: Insert the context-id X into each PL(b;), 1<i<k, keeping the
ascending order of context-id's on each PL(b;)

Step-3: Scan the CIT from the character b ; fo the last. Suppose the
character that currently be sacnned is a. If a=b;, I<i<k
then let count(a) = count(a) +1. Ifb; <agh, ,, I<i<k, then
let pointer(a)=pointer(a)+i For each a >b, , et
pointer(a) =pointer(a) +k

Algorithm-8: Update the CIT and PLT when a leaf context X is

deleted from the database,

Step-1: Same as the Step-1 of the Algorithun-7.

Step-2: Delete the context-id X from each PL(b,), I<i<k.

Step-3: Scan the CIT from character b ; o the last. Suppose the
character currently scaned is a. Ifa=b;, 1<i<k, let count(a)
= cowu(a)-l. If b, <agb;, ;. I<i<k let pointer(a) =
pointer(a)-i. Foreacha >by, let pointer(a) = pointer(a)-k

Algorithm-9: Update the CIT and PLT when a leaf context X is

modified.

Step-1: Construct the charucter lists of the old context and of the new
context, respectively. Then sort these two character lists by
ascending order of character codes. As a convertion, we call
the sorted character lists of old context and new consext
CL(X) and CL(X"), respectively.

Step-2: Compare CL(X) with CL(X") to obuwin a string by by by =
CL(X")-CL(X) and a string d, d, wedy =CLIX)-CL(X")
The sming b, b, by here denotes the characters thar are
inserted into X, while the siing d, d, dj denotes the
characters that are deleted from X,

Step-3: Apply the Step-2 and -3 of the Algorithm-7 for the sring b, b,
by

Step-4: Ap;ly the Step-2 and -3 of the Algorithm-8 for the string d,d,
d;.

J

4. CONCLUSION

The following are the advantages of the ECHO model:

(1) Multiple context hierarchies of a document can be provided by
the ECHO mode!, for example, context structures and
typesetting structures. : '

(2) Any level of contexts can be located by menas of the ECHO
tree. Thus the ECHO has the ability to provide a flexible unit
for retrieving the textwal information,

(3) The ECHO can do subtree search o speed up the retrieval
performance. In other words, users can specify a subset of the
database as the scarch range.

(4) The ECHO tree is relatively easy to maintain. There are Just
O(log n) modes of un ECHO tree to be updated when a
context is inserted, deleted, or modified, where n is the
number of nodes in an ECHO tree.

(5) A sophisticated retrieval method such as character inversion is
easy to attachg to the ECHO model.

In*addition, the ECHO model is language independent. That is, it

is suitable for representing the context structures of documents in

any language.

The major factors of the access performance of an inversion
method are AND-merge and OR-merge operations. The ARCIM
can reduce both the number of AND-merge operations and the
total length of posting lists invoked by AND-merge operations.
Thus, the ARCIM can improve the access performance by a
conventional character inversion method. Besides, the ARCIM
needs less storage overhead than a conventional character
inversion method.

REFERENCE

1. Faloutsos, C., “Access Methods for Text”, ACM computing
Swrveys, Vol. 17, No. 1, March 1985, p.p.49-74. :

2. Ozkarahan, E., Database Machines and Database Management,
Reading, ISBN 0-13-196031-8, Ch. 12, “Decument Retrieval”, .
Prenice-Hall, Inc., New J ersey. ' ‘

3. Peels, A. J. H M, Janssen, N. J. M., and Nawijn, W,
“‘Document Architecture and Text Formatting”, ACM
Transactions on Office Infonnation Systems, Vol. 3, No. 4,
October 1985, p.p.347-369. -

4. Emrath, P. A, Page’ Indexing for Textual Infonnation Retrieval
Systerns, Ph. D. Thesis, Univ. of Hlinois at Urbana-Champaign,
1983.

5. Hsieh, C. C. etal, The Design and Implementation on the
Chinese Full-text Processing System, Chinese Publication,
Computing Center, Academia Sinica, Sept. 1986. .

6. ISO, Draft Internationa! Standard 1SO/DIS 8879, Information
Processing—Text and Office Systems - Standard Generalized
Martup Language (SGML), International Organization for
Standardization, Geneva, Switzerland, Oct. 1985.

7. Faloutsos, C., and Christodoulakis, S., “Signature Files ; An
Access Method for Documents and Its Analytical Performance
Evalusion”, ACM Transactions on Office Information Systems,
Vol. 2, No. 4, Oct. 1984, p.p. 267-288,

8. Salton, G. and McGill, M. 1., Introduction to Modem Information
Retrieval, McGiraw-Hill, New York, 1983.

9. Haskin, R. L., “Special-purpose Processors for Text Retrieval”,
Database Engineering, Vol. 4, No. 1, Sept. 1981, P.P. 16-29.

10. Tseng, Shih-shyeng, The Design and Implementation of the
Chinese Character Characteristics Database, Chinese
Publication, Master Thesis, National Taiwan Institute of
Technology, Taipei, Taiwan, June 1982.

