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On the Design of Chinese Textual Database

Shih-shyeng Tseng, Chen-chau Yang and Ching-chun Hsieh

ABSTRACT

In this paper, an architecture of textual database based upon ECHO model is proposed.
The ECHO model provides a representation for expressing documents and a set of
operations on the representation that serves to express queries and other manipulations on

- documents. It has the abilities to provide multiple context structures of documents, a flexible

search unit for retrieving textual information, and a subrange search on a textual database. In
addition, the ECHO tree is relatively easy to maintain.

The inversion of terms is the most-commonly-used retrieval method for textual
database. Its advantages are that it is relatively easy to implement and is fast. In order to
improve the query performance, a refined character inversion method for Chinese textual
database, called ARCIM, is also proposed in the paper. The ARCIM can retrieve texts faster
than a simple character inversion method.

Eeywords: Textual database, document model, document retrieval.

1. INTRODUCTION

The differences between a conventional database and a textual database, which are
discussed in [Falo85] and [Ozka86), can be summarized as follows. First, the conventional
database deals with retrieval and manipulation of formatted records but the textual database
with documents. Second, formatted records differ from documents in the data structure, the
query language, and operational requirements such as update frequency and size of database.
Both in [Falo85] and [Ozka86], a document is considered as a non-structured data consisting
of an arbitrary number of words. This argument is not true at all. On the contrary, the
document is also a structured data only its structure is not similar to the structure of
formatted records. '
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Since documents are the constituents of a textual database, the development of textual
database has to be based upon an underlying model for documents. The model for
documents, similar to conventional data models [Ullm82], consists of two components:

(1) a representation for expressing the documents, and
(2) operations on the representation that serves to express queries and other manipulations
on documents. |

_ A document can be defined in two ways: from the viewpoint of its functions and from
the viewpoint of its constituents. The former, adapted from [PeJN85], a document is defined
“as a material reproduction of the author’s thoughts and its prime objective is to transmit,
' communicate, and store these thoughts as accurately as possible, regardless of the medium
“used for these thoughts. The latter simply defines a document as a text associated with one -
“or more structures as discussed in [BeRG88], [Hora85], [Hsie88], [ISO8613], [PeJN85], and
[TsYHS88]. In this paper, a document is regarded as the both. The structures of documents
will be discussed in detail in sections 2 and 3, and a representation for expressing the

structures of documents, called ECHO, will be introduced in section 4.

An architecture of textual database based upon the ECHO model is shown in figure 1.
It is composed of five modules: an ECHO subsystem, a text retrieval subsystem, a user
interface, a query processor, and a maintenance subsystem. The ECHO subsystem provides
a mechanism for storing the documents and their structures. It will be introduced in section
4.4. The text retrieval subsystem provides an important mechanism to improve the retrieval
performance, which will be discussed in section S. The user interface accepts and recognizes
the requests given from users. A user request may be a query expression or a maintenance
command. If a query expression is given, it will be passed to the query processor. By means
of the text retrieval subsystem and the ECHO subsystem, a set of contexts satisfying the
query expression can be found by the query processor. The query processing will be discussed
in section 6. The maintenance subsystem provides the necessary operations for maintaining
the ECHO subsystem and the text retrieval subsystem. It will be mentioned in detail in
section 7. :

2. DOCUMENT REPRESENTATION

Definition-1: Text. A text is a heterogeneous data string consisting of a sequence of text
components of various types. Text components may be symbols, words, phrases, or sentences
in natural or artificial languages, figures, formulas, or tables. A set of text components are
said to be in the same type if and only if they are represented by the same set of notations and
manipulated by the same set of operations.

From definition-1, it is clear that the concatenation of a number of texts forms a larger
text and the segmentation of a text forms a number of smaller texts. The text components
can be roughly classified into two types: character type and non-character type. A text
component of the character type is one that consists of only characters, such as a symbol, a
word, a phrases, a sentence, and sometimes a formula or a table. The figures such as
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Figure 1 A proposed architecture for textual database
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pictures, diagrams, drawings, paintings, or images, by contrast, are the text components of
non-character type. In this paper, only the retrieval on the character type is regarded. The
text components of the non-character type are excluded from the retrieval operation at
current state.

From the definition of document which mentioned in section 1, the necessary condition
that a text forms a document is that the text implicitly contains a complete set of the author’s
thoughts on a specific topic. In practice, when an author writes a document, he first organizes
a number of text components to form a basic text element, e.g., a paragraph. Then he
organizes a number of the basic text elements to form a larger text element, e.g., a section,
and so on, until the document is formed. That is, in order to reflect the conceptual skeleton
of the author’s thoughts, the text of a document must be organized into a logical structure,
e.g., as shown in figure 2. The logical structure is defined as a hierarchy of text elements, in
which each text element, except for a basic text element, is a composite of a set of smaller
text elements. Where a fext element is a part of the text or the whole text that forms a
meaningful unit of a document, e.g., a paragraph, a section, a chapter, a document, etc. A
text element which contains no any smaller text element is called a basic text element. A text
element, by contrast, is a structured text element if it contains some subordinate text elements.

The logical structure of a document is always presented in a readable manner. For
example, a paragraph starts with a new line and the first word of it usually follows some
leading blanks; sections are distinguished from each other by some space lines; a chapter
begins from the top of a new page; and the titles of chapters or sections are printed in an
individual line and by enlarged fonts. The one such as mentioned above that formats the text
of a document in a representation medium, e.g., paper or screer, is called the layout structure
of the document. In other words, the layout structure of a document explicitly reflects the
formatting of the text and the logical structure of the document in a representation medium.
The layout structure is defined as a hierarchy of layout elements. A layout element may be a
page, a set of pages, or a subordinate element of a page, e.g., a line, a block, or a frame. In
general, a page forms the representation unit of the document contents. A number of pages
constitute a set which may be a chapter, a preface , or a table of contents, etc., as shown in
figure 3. Sometimes, a document may have more than one layout structure in which each
represents the formatting of the text in an individual medium and for an individual version,
e.g., a normal size version or a packet size version. For any document on a particular
medium and on a particular version, the logical structure and the layout structure are mixed
and they are embedded in the text. The logical structure and the layout structure of a
document and the relationship between them have been discussed in detail in [Hora85],
[ISO8613], and [PeJN85].

Definition-2: Context. Given a text, a context is defined as follows:
(1)The whole text is a context.
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(2)If a context is partitioned into a number of nonoverlapped but concatenated subtexts, then
each subtext is a context. "

In definition-2, the whole text specified in (1) is referred to as the root context or the
level; context. The partitioning process specified in (2) is referred to as the hierarchical
partitioning. That is, the root context can be partitioned into a set of level, contexts, then a
level, context can be further partitioned into a set of level; contexts, and so on. In other
words, formally, a level; context can be partitioned into a set of level;,; contexts. A context
Y is said to be (entirely) contained in a context X, or reversely, the context X is said to (fully)
contain the context Y, if and only if the context Y is directly or indirectly partitioned from the
context X. A leaf context is defined as that it contains no any lower level context.

Theorem-1: Each context of a given text forms a tree structure, called confext structure.
Proof: Referred to the definition of a tree proposed in [Knut73}, the proof is given as follows.
From definition-2, the given text is the level; context. Depending upon whether the level;
context, i=1, is partitioned into a set of level;, ; contexts or not, there are two cases have
to be discussed.
Case I: If the level; context is not partitioned, then it forms a special tree structure having
only the root.
Case 2: The level, context is partitioned into a set of level;,; contexts. The necessary
condition that the level; context forms a tree structure is that each of the level; , ; contexts
contained in the level; context forms a tree structure. Thus the problem is turned into
that to show each of these level., ; contexts also forms a tree structure. For each level,
context which is not partitioned, similar to case 1, it forms a special tree structure having
only a root. For each level,,, context which is partitioned into a set of level;, , contexts,
let i+1 be i and recursively apply the case 2 until a leaf context is reached. It is clear that
each level; context forms a tree structure. o
From both cases, the theorem is proved. O

Theorem-2; The contexts in a context structure satisfy the property of hierarchical
partitioning. That is, given any two contexts of the context structure, say contexts A and B,
only one of the followings holds:

(1) context A is entirely contained in context B,

(2) context B is entirely contained in context A, and

(3) context A and context B have no common subtext. _

Proof. Referred to definition-2, it is obvious that only one of the three relationships exists
between the contexts Aand B: |
(1)The context A is partitioned from the context B. For this case, it is clear that the

context A is entirely contained in the context B.

(2)The context B is partitioned from the context A. For this case, it is clear that the

context B is entirely contained in the context A.
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(3)Both the context A and the context B are partitioned from a context of a higher level,
say context X for any. For the case, the context A and the context B must be
nonoverlapped. Thus the context A and the context B have no common subtext.

From these discussions, the theorem is proved. O

From the previous argument, a document has three important constituents: the text,
the logical structure and the layout structure. It is clear that the text elements within a
document is hierarchially partitioned from the text of the document. For example, referred
to figure 2, the text of document is first partitioned into a number of nonoverlapped but
_concatenated pieces of text in which each forms a chapter; the text of a chapter is then
partitioned into several nonoverlapped but concatenated subtexts in which each forms a
section; and so on. From theorem-1, the logical structure of a document is a context
structure. In addition, from theorem-2 each text element within the context structure
satisfies the property of hierarchical partitioning. On the other hand, if a page is seen as the
basic layout element, then the layout structure of a document is also a context structure.

Since the context structure of a document is really a tree structure, it can be explicitly
represented by a tree, called context tree. In the context tree, each node denotes a context of
the document. The properties of a context tree, as shown as follows, are easily derived from
definition-2, theorem-1, and the natures of a document.

Prop.1: A subtree of the context tree is also a context tree.

Prop.2: Given any two nodes of the context tree, say nodes X and Y, the node Y is a
descendant of the node X if and only if the context denoted by the node Y is entirely
contained in the context denoted by the node X. Conversely, the node X is an ancestor of
the node Y. In addition, if there does not exist any node Z such that the node Z is a
descendant of the node X and the node Z is also an ancestor of the node Y, then the node
Y is a child of the node X or the node X is the parent of the node Y.

Prop.3: For any node of the context tree, the number of its children cannot be prespecified by
a constant. That is, a context contains a non-predictable number of smaller contexts.

Prop.4: For any node of the context tree, the order of its children is unchangeable. That is,
the order of the contexts of a document cannot be changed at all.

Prop.5: 1If nodes Y, , Y, ..., Y, are the children of node X in the context tree, then the
length of the context denoted by the node X is the sum of the lengths of the contexts
denoted by the nodes Y; , Y, ,.., Y, . In addition, for any context, its length cannot be
prespecified by a constant.

To be short, there are some conventions used in this paper. First, the context denoted
by a node X of the context tree is simply called context X. Second, a context tree or a sub-
context tree is named by its root node, i.e., the context tree X means that it has the root node
X. Third, the height of a context tree is referred to as the maximal number of levels of the
tree from the root to leaf nodes.
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From the arguments above, a document can be completely represented in terms of its
text and its context structures. Two documents are said to be of the same class if they have
similar lengths of texts and similar heights of context trees. A textual database is always
composed of a set of documents of the same class. Consider two different classes of
documents: short-shallow documents and long-deep documents. A short-shallow document
is short in the length of its text and shallow in the height of its context tree, such as an
abstract, a bibliography, a letter, etc. In general, it has the length of text no more than a
thousand words and the height of context tree no more than three. For a textual database
which is composed of short-shallow documents, a whole document is always served as the
search unit for retrieving textual information from it. On the other hand, a long-deep
document is long in the length of its text and deep in the height of its context tree, such as a
book. In general, it has the length of text from thousands of words to millions of words and
the height of context tree no less than four. For a textual database which is composed of
long-deep documents, such as the Chinese History Documents Database [Hsie88], a whole ‘
document is too large to be served as the search unit for retrieving textual information from
it. Instead of a whole document, a paragraph, a page, or a section is suitable to be served as
the search unit. All of the whole document, the paragraphs, the pages and the sections are
the contexts of documents. Hence the contexts of documents are able to be served as the
search units for retrieving textual information from a textual database. A hypothesis is then
proposed to be the conclusion of this section.

Hypothesis: A document can be completely represented in terms of its text and its
context structures. The contexts of documents are able to be served as the search units for
retrieving textual information from a textual database.

3. IMPLEMENTATION OF CONTEXT STRUCTURES

There are two different ways to implement context structures: the implicit
representation and the explicit representation. The implicit representation is one that the
context structure is embedded in the text and is recognized by a program. In an implicit
representation, a set of specific context delimiters must be inserted into the text in order to
identify each context, such as that discussed in [Emra83]. A context is then surrounded by a
pair of beginning and ending delimiters. The text scanner can then be used to find the
beginnings and ends of contexts. A higher-level context which contains the current context or
a lower-level context which is contained in the current context can also be searched by
scanning the text forward and backward. In the implicit representation, the logical structure
and the layout structure of a document can be simultaneously represented by using two
different sets of context delimiters.

The advantages of the implicit representation are the context structure is relatively
simple, it requires no space overhead excepting the space for context delimiters, and it is
relatively easy to maintain. However, the time required for scanning a context from the
whole database is O(L), where L denotes the size of the whole database. The major
disadvantage of the implicit representation is that one must retrieve textual information by
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using the access method based on full text scanning [Falo85]. Even a refined string pattern
matching method, such as that proposed in [AhCo75] and [BoMo077], can be used to improve
the access performance, the full text scanning still consumes too much time for retrieving
textual information. Hence it is not reasonable to implement a large textual database by
using only the implicit representation method. '

Recall from section 2 that a context structure of a given text can be explicitly
represented by a context tree with each node of the tree denotes a context of the context
structure. Hence instead of inserting a number of sets of specific context delimiters in the
text, the explicit representation uses a set of explicit context trees (or called context trees for
short) to reflect the context structures of a text. The data structure of a context tree is
proposed in definition-3 and the explicit representation is then proposed in definition-4.

Definition-3: Explicit context tree. An explicit context tree is a tree representing a
designated context structure of a given text. In the tree, each node uniquely denotes a context
of the context structure, and it has a local name and a vector consisting of a pair of pointers,
(BP,EP). Where the pointers, BP and EP, point to the beginning position and the ending
position of the context denoted by this node, respectively.

Defintion-4: Explicit representation. The explicit representation for expressing the
context structures of a given text T is defined as a finite set, (T,H; ,H, ,....Hy ), consisting of
the text T and k explicit context trees. Where the text T was defined in definition-1 and each
explicit context tree H; , 1<i<k, representing a designated context structure of the text T, was
defined in definition-3.

A textual database is basically an instance of the explicit representation, e.g., as shown
as figure 4. In figure 4, the textual database is simply represented as (T,Hc,Ht,Hs). Where T
denotes the whole text of all documents of the database, and Hc, Ht and Hs respectively
represent the logical structure, the layout structure, and the storage structure of the text T.
Both the logical structure and the layout structure are mentioned in section 2. The storage
structure represents how the text T is stored in the storage of a particular computer system.
In addition, there is an example of the context tree shown in figure 5.

Referred to the characteristics of a tree [Knut73], for each node X of the context tree,
‘'there exists a unique search path from the root to node X. The path name of node X is then
defined as the list which consists of the local names of the nodes along the search path for
node X. The number of nodes (or local names) in a path name is referred to as the length of
the path name. In the explicit representation, because each context is uniquely denoted by a
node of the context tree, the path name of node X is also regarded as the confext-id of context
X. For example, referred to figure 5, the path name of node ds is ab; ¢4 ds ; thus the
context-id of context ds is also ab; c4 ds. The context-id of a context stands for the search
path on the context tree in which the context should be located. That is, by means of the
context tree, the beginning and the end of a context, which are indicated by a vector (BP,EP),
can be easily searched when its context-id is given. A higher- level context which contains the
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current context or a lower-level context which is contained in the current context is also easily
searched via the links on the context tree. The time required for searching a context by
means of the context tree is O(n), where n denotes the length of the context-id of the context.
In general, n is roughly O(log L) and is much smaller than L, where L denotes the length of
the whole text of a textual database. Hence, from the viewpoint of search performance, the
explicit representation is much better than the implicit one.

The following is an additional property of the context tree :
Prop.6: For any node X of the context tree, except for the root, if the length of its path name
is k, k>1, then the path name of node X can be formally presented as the list Ny N, ..N;. .
‘It is obvious that node X has k-1 ancestors and each of them is denoted by a proper prefix
of the path name of node X. Where a proper prefix of the list Ny N, ...N} is defined as a
sublist of the form N; N, ...N:, 1<k .
For example, referred to figure g, node dg has three ancestors because the length of its path
name, abs ¢4 ds , is four. The path names of these ancestors are a, ab; , and ab; ¢, .

Theorem-3: Given any context X of a document, except for the document itself. If the
length of the context-id of context X is k, then k>1 and there exist k—1 higher-level contexts
of the document in which each contains the context X. In addition, each of these higher-level
contexts is denoted by a proper prefix of the context-id of context X.

Proof: Because the path name of node X is also the context-id of context X, it is trivial to
derive this theorem from prop.2 and prop.6. O

Theorem-4: Given any two contexts, say X and Y, of a document, only one of the
followings holds: '
(1) Context X is entirely contained in context Y if and only if the context-id of context Y is a
* proper prefix of the context-id of context X. ' :
(2) Context Y is entirely contained in context X if and only if the context-id of context X isa
proper prefix of the context-id of context Y.
(3) Context X and context Y has no common text if and only if the context-id of context X is
not a proper prefix of the context-id of context Y and vice versa. '
Proof: 1t is trivial to derive this theorem from the theorem-2 and theorem-3. O

Because any level of contexts can be located by means of the context trees, the explicit
representation has the ability to provide a flexible unit for retrieving the textual information.
As an example, for a textual database consisting of a set of long-deep documents, one can
_retrieve the textual information in pages, in paragraphs, or in sections. The explicit
representation also provides some important advantages on retrieval mechanism of a textual
database. First, a sophisticated retrieval method is easily applied to the explicit
- representation. There have some such retrieval method mentioned in [Falo85] and [Ozka86},
e.g., inversion of terms, surrogates of contexts, etc. Second, by means of specifying a subtree
of a context tree, one can reduce the search space and then speeds up the retrieval
performance. Third, for example, suppose that the inversion method is applied to the textual
database. From theorem-3, each higher-level context which contains a designated context X
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is represented by a proper prefix of the context-id of context X. The inverted terms for
context X also stand for all higher-level contexts containing context X. Hence the size of
inversion table should be reduced.

However, the disadvantages of the explicit representation are: it requires space
overhead to store the additional context trees and both the text and the context trees have to
be updated in order to maintain a context. Contrarily, in the implicit representation, only the
text must be updated for maintaining a context. In the explicit representation, for a context
tree, the maintenance cost of a context is defined as the number of nodes in which the vector
(BP,EP) in each node must be updated when the context is maintained. For any context tree,
the maintenance cost of a context is very difficult to compute accurately. But for a nearly
balanced context tree, the maintenance cost of a context can be roughly calculated as follows.

A context tree is said to be nearly balanced if and only if the context tree satisfies the
following properties: (1) each node, except for a leaf node, has a nearly equivalent number of
children; and (2) the search path of each leaf node is nearly equivalent in the length. From
theorem-5, discussed in the next paragraph, the average maintenance cost of a leaf context on
a nearly balanced context tree is about N/2, where N denotes the number of nodes on the
context tree. To maintain a context always invokes the maintenances of some leaf contexts
contained in the context. Hence it is reasonable to said that the maintenance cost of a
context is O(N). For a huge textual database, because the number N is very large, the
maintenance cost becomes a heavy burden for updating a context. In the explicit
representation, the addressing mechanism used in a context tree is known as the absolute
addressing. In order to reduce the maintenance cost, a refined explicit representation using a
relative addressing mechanism, called Explicit Context-Hierarchical Organization (abbr.
ECHO), is proposed in this paper. It will be discussed in section 4.3 that ECHO can reduce
the maintenance cost from O(N) to O(log N). ' ' '

Theorem-5 : Given a text and a context tree which represents the context structure of
the text. If the context tree is nearly balanced, then the average maintenance cost of a leaf
context is about N/2, where N denotes the number of nodes on the context tree.

Proof : From the properties of a nearly balanced context tree, it is reasonable to assume that
each node of the context tree, except for a leaf node, has an average number, m, of
children and the average length of search path of each leaf node is n. The number n also
roughly denotes the number of levels on the context tree. As a convention, these levels,
from the level of root to the level of leaf nodes, are named by level; ,level, ..., level ,
respectively. It is obvious that level, , 1<i<n, has m*! nodes. The total number of nodes
on the context tree is then given by ’

() N=Z i m*l=(m"-1)/(m-1).
Suppose that a leaf context X is maintained and the maintenance causes a change in the
length of context X. It is obvious that the length of each higher-level context containing
context X is then changed and the location of each context behind context X is also moved.
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Hence each node on the search path of node X or on a search path in the right side of
node X must be updated. In other words, a node has to be updated if any of its
descendants is updated or any node on a search path in the left side of it is updated. In
order to calculate the average maintenance cost of a leaf context, the total maintenance
cost of all leaf contexts, called TC, must be computed first. Based on the assumption that
each leaf context is maintained with an equivalent probability, TC is given by

(62) TC = Elf,lSM Cj = ElSISM (EISISD cij ) = ElSlﬁn (E]-SJSM Cij )
Where M=m""! denotes the total number of leaf contexts (also leaf nodes), Cj denotes
the maintenance cost of an individual leaf context, and c;; denotes the number of level,
nodes which must be updated for maintaining an individual leaf context. For each level,
1<i<n, there have L=rn"1 nodes on this level and each of these nodes has m"" leaf
elements. A node X is said to be a leaf element of node Y if and only if node X is a leaf
node and either node X is a descendant of node Y or node X = node Y. Asa convention,
all nodes on leveli , from left to right, are named by node; , node;, ,....node;
respectively. From the discussion before (€2), for level;, from node;, to node;; must be
updated for maintaining each leaf element of nodey . That is, all the leaf elements of
nodey, have same value of ¢; which is L-k+1. Thus the value of T,y ¢;; can be
calculated as following. _ _

(63) ElstM Cij = ElSkSL m’“(L—k+ 1) = (mn-l)]_(L‘f' 1)/2
From equations (e1), (€2), and (e3), the value of TC is then given by

(e4) TC = Ty (m"'IAL+1)/2) = M(N+n)/2 = MN/2, N>>n.
Last, the average maintenance cost of a leaf context is TC/M = N/2.0

4. EXPLICIT CONTEXT-HIERARCHICAL ORGANIZATION

Definition-5: ECHO tree. An ECHO tree is a modified context tree in which a relative
addressing mechanism is used instead of an absolute addressing mechanism. In an ECHO
tree, each node has a local name and a vector (D,L). For the root, the D denotes the
beginning position of the root context. For each of other nodes, say X for any, the D denotes
the distance between the beginning positions of the contexts denoted by the node X and by
the parent of the node X. For each node, the L denotes the length of the context denoted by
this node. :

As conventions, for each node of an ECHO tree, say X for any, the D-value of the node
X is denoted by D(X) and the L-value of the node X is denoted by L(X).

Theorem-6: For each node of an ECHO tree, the value of the vector (D,L), except for
D(root), can be computed as follows.
(1) If a node X is a leaf node, then 1(X) is actually the length of the leaf context X, otherwise,
L(X)=L(Y; )+L(Y, )+..+ (Y} ). Where Y;,Y,, .., Y, denote all the children of
the node X.
(2) If a node Y is the leftmost child of its parent, then D(Y) = 0, otherwise, D(Y) =
D(Z)+1(Z). Where the node Z is the nearest left sibling of the node Y.
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Proof: From definition-5 and prop.5, it is easy to show the part (1) of the theorem. The part
(2) is proved as follows. For each non-leaf node X of the ECHO tree, suppose that the
node X has k children which are respectively named by Y;,Y,,..., Y} , from the leftmost
one to the rightmost one. From definition-2, the formation of a context structure is based
on the hierarchical partitioning. It is obvious that the context Y, and the context X have
the same beginning position. Hence D(Y, )=0. In addition, it is easy to show

(e5) D(Y;)=D(Y;.1)+1(Y}.1 ), 1<ick |
Where the node Y; ; is the nearest left sibling of the node Y; . From above, the theorem
is proved. 00 - '

Definition-6: ECHO structure. The ECHO structure for expressing the context
structures of a given text T is defined as a finite set, (T,E; ,E, ,...Ey ), consisting of the text T
and k ECHO trees E, , E,, ..., E, . Where the text T was defined in definition-1 and each
ECHO tree E;, 1<i<k, representing a designated context structure of the text T, was defined
in definition-5. :

Since the ECHO structure is a modified explicit representation, most of the discussions
about the explicit representation are also suitable for the ECHO structure. For example,
figure 4 can be also used to depict a textual database , (T,Ec,Et,Es), based on the ECHO
structure if the context trees Hc, Ht and Hs are respectively replaced by the ECHO trees Ec,
Et and Es. In addition, an example of the ECHO tree which is equivalent to the context tree
shown in figure 5 is shown in figure 6. The operations for the ECHO structure can be
classified into three types: the search functions, the constructing operations, and the updating
operations. They are respectively discussed in sections 4.1, 4.2, and 4.3.

4.1 THE SEARCH FUNCTIONS

There are three basic search functions provided for the ECHO structure (T.E, ,E,
~-Ey ): get. ptrs, get_ text and get ids. They will be defined in definition-7, -8 and -9,
respectively. -

Definition-7. get. pfrs. Given a context-id N; N, ..N_ . The search function get_ ptrs
computes the beginning position and the ending position of the context Ny N, .N, .

It is inferred from prop.6 and the relevant discussions that each context within the
ECHO structure (T,E, ,E, ,...Ey ), say X for any, can be formally represented by a unique
context-id, Ny N, ..N_ , 1<m<n, where n is the height of the ECHO tree containing the node
X. As a convention, the beginning pointer and the ending pointer of the context X are
respectively denoted by BP(N; N, ..N; ) and EP(N; N, ...N, ). In addition, for a node Ny N,
..N; , its D-value is denoted as D(N; N, ...N; ) and its L-value is denoted as I{N; N, ..N; ).

Algorithm-1: Performs the search function get_ ptrs.
Input: A context-id Ny Ny ..N, .

Output: BP(N; N, ..N_ ) and EP(N{ N, ..Np, ).
Precedure:



sl: P = D(Ny );

s2: fori:= 2tomdo BP := BP + D(N; N, ..N;);
s3: EP:= BP + L(Ny N5 .N, ) = L;

s4: return BP and EP as the result;

Theorem-7: Algorithm-1 correctly performs the function gez_ ptrs.
Proof: From definition-5, it is easy to derive the equations (e6) and (7).
, D(N; ), m=1

(e6) BP(N; N, .N, ) =

v _ BP(N{ Ny .N 1 )+D(Ny Ny .Np, ), m>1
(e7) EP(N{ N, ..N, ) = BP((N{ N, Ny )+ LNy Ny WNp ) -1
" The equation (e8) is then transformed form (e6). : :

(e8) BP(N{ Ny .N ) = Eycicm D(N; ..N;) :
From s1 and s2, it is easy to find that the value of BP is the same as that shown in (e8).
And from s3 the value of EP is the same as that shown in (e7). Hence the theorem is
proved. O

Now let us take context d7 shown in figure 6 as an example. Its context-id is ab; ¢5 d,,
thus we have
BP(d; ) = D(a)+D(b3 )+D(cs )+D(d5) = 1+354+204+10 = 569, and
EP(d;) = BP(d7)+L(dy)-1= 569+181-1 = 749.
The result (569,749) is the same as the value of vector (BP,EP) on context d; as shown in
figure S.

Definition-8: get_ text. Given a context-id Ny Ny ..Np, . The search function get. text
read the context Ny N, ...N, from the text T.

Algorithm-2: Performs the search function get_text.

Input: A context-id Ny N, .N .

Output: The text of context Ny N ..N .

Procedure: '

s1: Apply the search function get_ptrs to get the pointers BP(N; N, ...N_, ) and the EP(N; N,
N );

s2: to read a subtext from the text T from the position BP(N; N, ..N, ) to the position
EP(N; N, ..N_ ); ’

s3: return the subtext as the result;

Theorem-8: Algorithm-2 correctly performs the function get_ text.
Proof: From theorem-7, it is easy to show this theorem. O

Definition-9: get_ ids. Given the beginning position and the ending position of a subtext
S, respectively denoted by BP(S) and EP(S). The search function get_ ids finds a sequence of
contexts of the level m by means of a designated ECHO tree such that these contexts contain
the subtext S.
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Algorithm-3: Find a context N; N, ..N_ in which a given position P is located.
Input: A position P, an integer m specifying the length of context-id, and a node name N;
which is the root of the designated ECHO tree.
Output: A context-id Ny N, ..N, satistying the condition
BP(N; N, ..N ) <P<EP(N; N, ..N_).
Procedure:
sl:if P> D(N; ) and I{N; ) > P-D(N; ) +1 then
begin
s2:if m = 1 then return the root as result;
-s83:if m > 1then
~ begin
s4:fori:=1tom-1do
begin
s5:P:=P- D(N1N2 N );
s6: sequentially search the children of nodc N; ..N; to find a node N; ..N;,{ such
S that D(N; ..N;, ;1 )<P and I(N; ..N;, { )<P-D(N; ..N;, 1 )+ 1
end;
s7: return the context-id Ny N, ...N_, as the result;
end;
end;

Algorithm-4: Performs the search function get_ ids.

Input. The beginning position BP(S) and the ending position EP(S) of a subtext S, an integer
m specifying the length of context-ids, and a node name N; which is the root of the
designated ECHO tree.

Output: A sequence of context-ids denoting the contexts which contain the given subtext S.

Procedure:

s1: apply algorithm-3 to find a context-id N1 A, ..A such that BP(N; A, ..A, ) <BP(S)
SEP (N 1 A2 Am )’

s2: apply algorithm-3 to find a context-id N; B, ..B, such that BP(N; B, ..B ) <EP(S)
<EP(N; B, ..B,, );

s3: search the ECHO tree to find all context-ids of the length m which are in the range from
N;A,..A, toN;B,.B

s4: return all of the context-ids from N; A, ...A| toN; B, ..B_ as the result;

Theorem-9: Algorithm-4 correctly performs the function get_ids.
Proof: The proof can be divided into two parts. We first prove that algorithm-3 is correct.
Then we prove that algorithm-4 is correct.
Part I: A position P-is said to be located in a context N; N, ..N, if and only if
(€9) BP(Ny N, ..N )<P<EP(N; N, ..N,)
By applying the equations (e6) and (e7), the inequality (e9) can be transfered as the
inequality (e10).



In algorithm-3, s1 prevents the case that the given position P is out of the text T. From s2
through s6, it is clear that the inequality (e10) is correctly performed. Hence algorithm-3
correctly performs the inequality (€9). That is, algorithm-3 can be used to correctly find a
context in which the given position P is located.

Part 2: From s1 and s2 of algorithm-4, we have

(e11) BP(A{ A, .. A, )<BP(S)<EP(S)<EP(B{ B, ..B, )-

Thus from s3 and s4, it is clear that the given subtext S is contained in the sequence of
contexts from N; A, ...A, toN; B, ..B_ . Hence the theorem is proved. O

4.2 THE CONSTRUCTING OPERATIONS

There are two basic constructing operations provided for the ECHO structure (T,E):
tree-constructing operation and echomerge. They will be defined in definition-10 and -11,
respectively.

Definition-10: Tree-constructing operation. The tree-constructing operation is a series of
processes to construct an ECHO tree from a fully marked-up text.

In order to construct a context tree or an ECHO tree from a given text, the context
structure of the text has to be previously marked up. That is, a set of markup tokens must be
previously inserted into the text to identify each context of the text [Hsie88], [Tsen88] and
[TsYH88]. The discussions of the markups can be found in [CoRD87], [Hsie88], [ISO8879]
and [PeNJ85]. As a fully marked-up text is available, an ECHO tree of the text can be
constructed by the following steps. |
(1) A context parser scans the text to recognize each markup token and to construct an
intermediate ECHO tree which reflects the context structure of the text. An
intermediate ECHO tree differs from an ECHO tree in two things. First, for each leaf
node, the L-value is given but the D-value is undefined. Second, for each other node,
both the D-value and the L-value are undefined. The context parser is too complicated
to be discussed in this paper, and it was discussed in [Hsie88] in detail.

(2) For the intermediate ECHO tree, to compute the D-value and L-value of each node by
using the method proposed in theorem-6.

Definition-11: echomerge. Given a number of j ECHO structures (T, ,E; ), (T3 ,E; ),
vy (Tj ,E. ). The operation echomerge combines these individual ECHO structures to form a
Jarges ECHO structure (T,E). Each of the given ECHO structure (T; JE; ), 1<i<j, then
becomes a substructure of the ECHO structure (T,E). That means each ECHO tree Ei

becomes a subtree of the ECHO tree E.

From the conventions mentioned in section 2, a context tree is named by its root. Thus
the root of an ECHO tree X is simply called the node X. An ECHO structure can be formed
by combining a number of smaller ECHO structures. Such a combination invokes both the
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concatenation of their texts and the combination of their ECHO trees, as mentioned in
algorithm-5.

Algorithm-5: Performs the operation echomerge.
Input: j ECHO structures (T¢ ,Eq ), (T ,E5 ), - (Tj ,Ej ).
Output: A combined ECHO structure (T,E)
Procedure:
s1: T := null;
s2: create a new node E;
s3:fori:=1tojdo
begin
s4: append(T,T; ); :
s5: link the node E; to the node E such that E; becomes the rlghtmost Chlld of E

end;
s6: D(E) : = the beginning position of T;
s7: D(E{):=0;

s8: fori:=2tojdo D(E;) := D(El- )+LE; 1)
s9: I(E) := D(E )+L(E );

Theorem-10: Algorithm-5 correctly performs the operation combine.
Proof: From theorem-6, it is easy to show this theorem. O

4.3 THE UPDATING OPERATIONS

There are three basic updating operations provided for the ECHO structure (T.E):
echoinsert, echodelete and leafmodify. They will be respectively defined in definition-12, -13,
and -14.

Definition-12: echoinsert. Given an ECHO structure (T, ,E, ) and a parameter which is
either N; N, ..N_ :l or N; N, ..N_, :r. The echoinsert performs either of the following
operations, depending upon which parameter is given:

(1) If a parameter Ny N, ...N_ :1is given, the text T, is inserted into the text T in the position
that immediately precedes the context N; N, ..N_ ~and the node E, is linked to the
node N; N, ..N_, such that the node E, becomes the nearest left sibling of the node
N{N, LN

(2) If a parameter Ny N, ...N_ r is given, the text T, is inserted into the text T in the position
that immediately follows the context N; N, ..N_ and the-node E, is linked to the node

. Ny N, ..N_, such that the node E, becomes the nearest right sibling of the node N; N,
«Np -

From prop.2 and prop.6, the node Ny N, .N__; is the parent of the node N; N, . N,

A node X is said to be the nearest left (or right) sibling of the node Y if and only if the node
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X has the same parent of the node Y and the node X is in the position that immediately
precedes (or follows) the node Y.

Algorithm-6: Performs the operation echoinsert.
Input: An ECHO structure (T, ,E, ) and a parameter which is either Ny N, ..N :lor Ny N,
«Np T
Output: The ECHO structure (T,E) which the ECHO structure (T, ,E, ) was inserted into.
Procedure:
s1: apply the search function get_ ptrs to get the pointers BP(N; N, ..N, ) and EP(N; N,
SNL);

s2: if the gil\]zjen parameter is Ny N, ...N :l then

s3: insert the text T, into the text T in the position BP(N; N, ..Np; ) -1

s4: link the node E_ to the node Ny N, ..N__ , such that the node E, becomes the nearest
left sibling of the node Ny N, ..N_. ;
end; ’
sS: if the given parameter is Ny N, ...N r then

begin
s6: insert the text T, into the text T in the position EP(N; N, .Np, ) +1;
s7: link the node E,_ to the node Ny N, ..N__ ; such that the node E, becomes the nearest
right sibling of the node Ny N, ..N_ ;
end;
s8: if the node E, is the leftmost child of the node Ny N5 ..N 4
s9: then D(E, ) =0
s10: else D(E, ) =D(Z)+1(Z), where Z denotes the nearest left sibling of the node E, ;
s11: for each right sibling of the node E, , called node W, .
do D(W)=D(W) +L(Ey )
s12: for i=m-1 downto 1 do
begin
s13: L(N{ .N; )=L(N; .N; ) +L(E; );
s14: for each right sibling of the node N ...N;, called node U,
do D(U) =D(U)+(Ey );

end;

Theorem-11: Algorithm-6 correctly performs the operation echoinsert.

Proof: From s1 through s7, it is clear that the ECHO structure (T, ,E, ) is inserted into a
proper position of the ECHO structure (T,E). From definition-5, theorem-6 and
theorem-7, it is obvious that after the text T, is inserted into the text T, the following
situations occur:

(1) The BP(E, ) is changed. That is the D(E, ) is changed.

(2) The beginning positions of all the right siblings of the node E, are moved right by
L(E, ) from the original positions. That is, the D-values of all the right siblings of the
node E, must be added by I(E, ).
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(3) The lengths of all the contexts containing the text T, are increased by I(E, ). That is,
all the L-values of the ancestors of the node E, are increased by I(E, ).

(4) Follows (3), the beginning positions of all the right siblings of each ancestor of the node
E, are moved right by I(E, ) from the original positions. That is, the D-values of all
the right siblings of each ancestor of the node E, have to be added by L(E, ).

Referred to theorem-6, it is easy to show that the D(E, ) is correctly computed by s8, s9,

and s10. In addition, the sitution (2) is performed by s11 and the situtions (3) and (4) are

performed by s12, s13 and s14. Hence the theorem is proved.O

Definition-13: echodelete. Given a context-id N; N5 ..N_ . The operation echodelete
removes the context Ny Nz N from the text T and removes the subtree N; N, .N_ from
the ECHO tree E. ' o R '

Algorithm-7: Performs the operation echodelete.

Input: A context-id Ny Ny ..N_. .

Output: The ECHO tree (T,E) in which the context Ny N, ..N_is removed from the text T
and the subtree N; N, ..N_ is removed from the tree E.

Procedure:
s1: apply the search function ger_ ptrs to get the pointers BP(N; N, ..N_ ) and
EP(N; N, ..N_.);

s2: remove a subtext from the position BP(N; N, ..N_ ) to the position EP(N; N, .N_ )
from the text T;
s3: for each right sibling of the node Ny N, ...Nm , called node W,
do D(W)=D(W)-L(N; N5 ..N . );
s4: for i=m-1 downto 1 do
begin
sS: YNy ..N;)= L(Nl N;)- L(N1N2 Ny, )
s6: for each rlght sibling of the node N, .. N called node U, do D(U)=D(U)-L(N; N,
Ny )
end;
s7: disconnect the link between the nodes Ny N, .N_, ; and N; N, .N_|

Theorem-12: Algorithm-7 correctly performs the operation echodelete. :
Proof: From s1 and s2, it is clear that the context Ny N, ..N_ is correctly removed from the

text T. And from s7, it is clear that the subtree Ny N, ..N_ is correctly removed from the

tree E. From definition-5, theorem-6 and theorem-7, it is obvious that after the context

N; N, ..N_, is removed from the text T, the following situations occur:

(1) The beglmung positions of all the right siblings of the node N; N, ..N_ are moved left
by L(N; N, ..N_, ) from the original positions. That is, the D-values of all the right
siblings of the node N; N, ..N, must be decreased by L(N; N, ..N_ ).

(2) The lengths of all the contexts containing the context N; N, ..N_ are decreased by
L(N; N, ..N_ ). That is, the L-values of all the ancestors of the node Ny N, ...N are
decreased by L(N; N, ..N, ).
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(3) Follows (2), the beginning positions of all the right siblings of each ancestor of the node
N; N, ..N, are moved left by L{N; N, ..N_ ) ) from the original positions. That is,
the D- values of all the right siblings of each ancestor of the node N; N, .N_, have to
be decreased by IL(N; N, ..N_ ).

It is clear that the sitution (1) is performed by s3 and the situtions (2) and (3) are

performed by s4, s5, and s6. Hence the theorem is proved. O

From the characteristics of the context structure, it is obvious that the modification of a
context is actually realized by modifying some leaf contexts. As a convention, the modified
version of a leaf context X is called context X. The modification of the leaf context X may
causes a change in the I(X), i. e., L(X)#L(X) The ECHO tree E has to be updated by using

the operation leafrmodify if L(X ) #LUX).

Definition-14: leafmodify. Given a leaf context X and its modified version X. The
operation leafinodify replaces the leaf context X by the modified version X’ In addition, the
operation leafmodify updates the (D,L) vectors of the relevant nodes if I_(X ) ALX).

Algorithm-8: Performs the operatlon leafmodify.
Input: A modified leaf context X' and its context-id N; N, ..N,
Output: The ECHO structure (T,E) in which the leaf context N1 N, ..N, is modified.
Procedure: _
s1: apply the search function get_ ptrs to get the pointers BP(N; N, ...N,, ) and

EP(N{ N, ..N,);
s2: remove a subtext from the position BP(N; N, ...N_ ) to the position EP(N; N, ..N )

from the text T;
s3: insert the context X into the text T in the position BP(N; N, ..N )-1;
s4: computes L(X) '
s5:if LX) #L(N; N, ...N; ) then

begin
s6: for each right sibling of the node N; N, ..N_ , called node W,
do D(W)=D(W)-L(N; N, ..N_ )+ (X );
s7: for i=n-1 downto 1 do
begin
s8: L(Ny ..N; ) =L(N; ..N; ) -L(N; N5 ..Nj )+L(X)
s9: for each nght sibling of the node N; .. N called node U,
do D(U)=D(U)-L(N; N, ..N_, )+L(X );
end;
end;

Theorem-13: Algorithm-8 correctly performs the operation leafmodify.
Proof: Referred to theorem-6, theorem-7 and the discussion before definition-14, it is easy to
prove this theorem. O
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Theorem-14: For a nearly balanced ECHO structure (T,E), the maintenance cost of a
context is O(log N), where N denotes the number of node on the ECHO tree E.
Proof: We first consider the cases of insertion and deletion. From theorem-11 and theorem-
12, the maintenance cost, MC, , of a context Ny N, .N_, is given by
(e12) MCy =m+Zscicm Kj, m<n.
Where K; denotes the number of right siblings of the node Ny N, ...N; and n denotes the
height of the ECHO tree E. Since the ECHO tree is nearly balance, it is reasonable to
assume that the average number of children of each non-leaf node is K and n=log N.
Thus we have
(e13) m<MC, <1+K(n-1)<K(log N).
It is clear that MC{ =O(log N).
Then consider the case that a leaf context N; N, ...N, ‘is modified. From theorem-13, the
maintenance cost of this case, MC, , is given by
(¢14) MC, =n+ By K
From the assumptions above, we have
(e15) n=(log N)<MC, <1+K(n-1)<K(log N)
Thus the MC, is also O(log N). From these cases, the theorem is proved. O

4.4 THE ECHO SUBSYSTEM

The ECHO subsystem shown in figure 1 is formally an ECHO structure (T.E, , E,
Ex ). In the ECHO structure, the text T is formed by concatenating the texts of all
documents and each ECHO tree E; , 1<i<k, represents a kind of context structure of the
database. In addition, the ECHO subsystem provides three basic search functions as
mentioned in section 4.1. But the constructing operations and the updating operations are
rather provided by the maintenance subsystem than provided by the ECHO subsystem. -

The constructing operations discussed in section 4.2 can provide a useful basis to build
the ECHO structure of a textual database. Recall from section 2 that a textual database is
constituted by a set of documents of a same class. Because a textual database is always very -
large, it is reasonable to build the ECHO structure by applying two processes, first dividing
and then combining, as mentioned below.

Dividing. All the source texts of a textual database are first divided into a number of
elementary segments such that each elementary segment forms an individual context and the
length of it is suitable for processing. The suitable length of an elementary segment depends
on the constraints given by the text processor and the context parser. In practice, for long-

‘deep documents, a suitable elementary segment is probably a document or a part of
document, e.g., a chapter. For short-shallow documents, a suitable elementary segment is
probably a document or a group of documents. For each elementary segment, the context
structure is then marked-up by using the text processor. And then the ECHO tree is
constructed by using the tree-constructing operation.
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Combining. In general, an elementary segment is much smaller than the whole text T,
therefore the ECHO structure cannot be built by directly combining all the elementary
segments. Hence multiple combinations of contexts are necessary for building a textual
database. That is, a set of relevant elementary segments are first combined to form a larger
context by applying the operation combine. Then a number of those larger contexts are
combined to form a more larger context, and so on, until the textual database is formed.

The discussions above only deal with the case (T,E) that a textual database has only one
context structure, In practice, a textual database usually has more than one context structure,
e.g., as shown in figure 4. For the latter case, suppose that the database, denoted (T,E, ,E,
s By )y has k, k>1, context structures. The necessary constraints of this case are: '
(1) Each constituent segment has exactly k ECHO trees in which each represents a kind of

context structure. S
(2) Only ECHO trees representing the same kind of context structures are able to be
combined. :
Thus for each elementary segment, it is necessary to apply the tree-constructing operation k
times to form k ECHO trees. And then a refined combining operation has to be applied
many times to form the final ECHO structure (T,E, ,E, ,...Ey ). The refined combining
operation differs from the operation combine in replacing each (T; ,E; ), 1<i<j, refferred to
definition-11, by (T; ,E4; ,Eo; - Ej )-

5. THE TEXT RETRIEVAL SUBSYSTEM

Referred to figure 1, the text retrieval subsystem plays the role of accelerating the
performance for retrieving contexts from the ECHO subsystem. The retrieval methods for
" text, as discussed in [Falo85] and [Ozka86], can be classified into four categories: full text
scanning, inversion of termis, surrogates of contexts and clustering. For a textual database,
these methods, except for the full text scanning, can be applied to improve the retrieval
performance. In the paper, a text retrieval subsystem based on the ARCIM, an inversion
method, will be introduced as an example. '

A simple inversion method uses an index table in which each entry consists of a term
along with a list of pointers, called posting list. These pointers point to the contexts containing
this term. In an English textual database, a term is actually a word. The advantages of the
word inversion are that it is relatively easy to implement, is fast, and provides synonyms
easily. Hence the word inversion has been adopted in most commercial systems, such as
BRS, DIALOG, MEDIARS, ORBIT and STAIRS [SaMc83]. But the disadvantages are: (1)
the storage overhead (50-300% of the size of text files [Hask81]), (2) the cost of updating and
reorganizing the index table, if the environment is dynamic, and (3) the cost of merging the
posting lists, if they are too long or too many.
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However, the word inversion is not suitable for Chinese text. The reasons are of
follows. First, a Chinese character string contains no nature delimiters, such as blanks in an
English sentence, to separate Chinese words. Second, an automatic and effective word
segmentation method for Chinese sentences has not been developed. Thus a character
inversion instead of the word inversion is used to access Chinese text. In the paper, a refined
character inversion method (abbr. ARCIM) will be introduced. It can provide a faster access
speed than a simple character inversion method.

Similar to a simple inversion method, the ARCIM uses a character index table, called
" CIT, and a posting lists table, called PLT, as shown in figure 7. An entry of the PLT, denoted
PL(C; ), is a posting list consisting of a variable number of sorted leaf context-ids.. Each leaf
context-id of the PL(C; ), say X for any, stands for the leaf context X containing the character
C; . In the CIT, each entry consists of a count and a pointer, denoted count(C; ) and
pointer(C; ), respectively. The pointer(C; ) points to the starting location of the PL(C; ) and
the count(C; ) denotes the number of leaf context-ids of the PL(C; ). In a Chinese computer .
system, the coding space of Chinese characters is fixed [Tsen86]. Hence the CIT can be
organized in a constant size and may be permanently located in the main memory. If a
character C; is given, the count(C; ) and the pointer(C; ) can be accessed by means of a
specific hash function which depends upon the coding scheme of the Chinese characters. An
example of the hash function can be found from [Tsen82]. In addition, if there exists a
character CJ which does not appear in any context, the count(C ) and the pomter(CJ ) will be
respectively set to zero and nil and the PL(C ) does not appear m the PLT.

There ‘are three types of operations provided for the ARCIM: the search operations,
the creation operations and the maintenance operations. The search operations will be
discussed in section 6. The creation operations and the maintenance operations are
respectively mentioned in sections 5.1 and 5.2.

5.1 THE CREATION OPERATIONS FOR ARCIM

Definition-15: ARCIM structure. An ARCIM structure is defined as a pair of CIT and
PLT, denoted (CIT,PLT). The data structures of the CIT and the PLT and the relationship
between the CIT and the PLT have been mentioned above.

For an ECHO structure (T,E, ,E, ,..,E; ), the text retrieval subsystem is composed of
a set of ARCIM structures, denoted ((CIT, ,PLT, ), (CIT, ,PLT, ), ..., (CIT} ,PLT} )), in
which each (CIT PLT; ), 1<j<k, corresponds to an ECHO tree E; . Algonthm -9 can be used
to create an ARCIM structuxe (C PLT ) from both the text ”[| and the designated ECHO
trecE. .

J°

Algorithm-9: Create an ARCIM structure (CITj ,PLTJ- ) from a given sub-ECHO structure
(TE;).
Procedure:
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Step-1: Create a new CIT in which the number of entries is equivalent to the number of
Chinese characters used in the computer system. Then for each entry, let count(C; )=0
and let pointer(C; )=nil. And create a new PLT which contains nothing.

Step-2: For each leaf context X of the sub-ECHO structure (T,E- ), perform the following
operations.

(1) Eliminate all blanks, punctuations, and other unnecessary symbols from the leaf
context X. The result is called the string X . ‘

(2) Eliminate all repeated characters from the string X'. The result is called the clist(X).

(3) Append the leaf context-id X to each character C; of the clist(X). The result is call the
cidlist(X). In the cidlist(X), each entry is a paJr of a character C; and the leaf context-
id X, denoted cidpair(C; ,X). ' ‘

Step-3: According to the sequence from the leftmost leaf context to the rightmost leaf
context, concatenate all the cidlists to form the cidtable.

Step-4: Sort the cidtable by a nondecreasing order of the character codes. The result is an
initial PLT. In the initial PLT, it is clear that all the cidpairs having the same character Ci
are grouped together to form a segment, i.e., an initial PL{C; ). And in an initial PI(C; ),
it is clear that all the cidpairs are ordered by an ascending order of the leaf context-ids.

Step-5: Scan the initial PLT to find each initial PL(C; ). At the same time, for each initial
PL(C; ), perform the following operations.

(1) Compute both the starting address (in number of cidpairs) and the number of cidpairs
of the initial PL(C; ), they are respectively the pointer(C; ) and the count(C; ).

(2) Write both the count(C; ) and the pointer(C; ) into a proper entry of the CIT and
append the context-ids of the initial PL(C; ), i.e., the PL(C; ), to the PLT.

Because Algorithm-9 is too complicated, it becomes very difficult to prove that
Algorithm-9 is correct. But it'can be verified by testing. For example, Algorithm-9 had been
successfully applied to create an ARCIM structure of the CED which is an experimental
Chinese electronic dictionary [Tsen88]. In the CED, the space overhead for storing the
ARCIM structure, 1.9 Mbytes, is about 30% to the size of the text files, 6.2 Mbytes. The
work to create ARCIM structures is once for all. Thus even the creation of an ARCIM
structure must consume a lot of computing hours, it is still endurable.

5.2 THE MAINTENANCE OPERATIONS FOR ARCIM

It is obvious that an ARCIM structure has to be maintained when a context is inserted,
deleted, or modified. The basic maintenance operations for the cases of insertion, deletion
and modification will be respectively mentioned in algorithm-10, -11 and -12.

Algorithm-10: Update the ARCIM structure (CIT,PLT) when a leaf context X is inserted into
the ECHO structure.
Procedure:
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Step-1: Construct the clist(X) by means of the step-2 of the Algorithm-9. Then sort the clist
by an ascending order of the character codes. Suppose that the characters of the clist are
C G

Step12CZInsert the context-id X into each PI(C; ), 1<i<j, keeping the ascending order of

context-ids of each PL(C; ).

Step-3: Scan the CIT from the entry for C; to the last. Suppose that the entry currently
scanned is for a character A.
(1) I A=C;, I<i<j, then let count(A):=count(A) +1.
QUG <A<Cl +1» 1<i<j, then let pointer(A): =pointer(A) +1.
 (3) For each A, A>C., let pointer(A): =pointer(A) +].

Algorithm-11: Update the ARCIM structure (CIT,PLT) when a leaf context X is deleted from

the ECHO structure.

Procedure:

Step-1: Construct the clist(X) by means of the step-2 of the Algorithm-9. Then sort the clist
by an ascending order of the character codes. Suppose that the characters of the clist are
¢ G..G.

Step-2: Delete the context-id X from each PL(C ), 1<i<.

Step-3: Scan the CIT from the entry for C; to the last. Suppose that the entry currently
scanned is for a character A.

(1) If A=C;, I<i<j, then let count(A): =count(A) - 1.
QIG <A<Cl +1» 1<i<], then let pointer(A): =pointer(A) —i
(3) For each A, A>C;, let pointer(A): =pointer(A) —j.

Algorithm-12: Update the ARCIM structure (CIT,PLT) when a leaf context X is modified.

Procedure:

Step-1: Construct the old chst(X) called clist(X), and the new clist(X), called chst(X) by
means of the step-2 of the algorithm-9, respectively. Then respectively sort these two clists
by an ascending order of the character codes.

Step-2: Compare the clist(X) with the chst(X) to obtam a string B; B, ... - —chst(X)—
clist(X) and a string D, D2 D, =clist(X)- clist(X)). Where the symbol - denotes a set
difference operation. It is clear that the string B; B, . B denotes the characters which
are added to the leaf context X, while the string D; D, .. D denotes the characters which
are removed from the leaf context X.

Step-3: Apply the step-2 and -3 of algorithm-10 to the string By B, ...B; .

Step-4: Apply the step-2 and -3 of algorithm-11 to the string D; D, ..Dp,

6. QUERY PROCESSING

The actions that a user queries information from a textual database can be roughly
summarized as follows. He selects first a set of terms (keywords) which stand for his topic of
interest. Then he queries the database to find a set of contexts containing all or some of the



terms. In general, the terms are conjoined by some operators, as mentioned in [Holl79]. In
our system, a query expression has the following form:
(el6) FIND context-clause
CONTAIN search-clause

scope-clause;

In a query expression, the context-clause specifies which type of the contexts is
retrieved. A context clause has the following form:

(e17) context-clause ::= LEAF CONTEXTS | CONTEXTS OF LENGTH k
Where the symbol ::= means “is defined as” and the vertical bar | stands for “or”. The
phrase “LLEAF CONTEXTS” denotes that each retrieved context must be a leaf context. The
phrase “CONTEXTS OF LENGTH k” specifies that each retrieved context has the context-
id of length k.

The search-clause specifies a condition the retrieved contexts must satisfy. The basic
form of a search clause is shown below.

(e18) search-clause ::= search-phrase {OR search-phrase}

(e19) search-phrase ::= term {AND [NOT] term}

(€20) term ::= string | wild-card-term | ordered-term
Where the braces {...} denote a repetition of any times and the brackets [...] denote an
optional item. The operations for a search clause will be discussed in detail in sections 6.1
and 6.2.

The scope-clause specifies the search space a query invokes. A scope clause has the
following form: _
(€21) scope-clause ::= UNDER context-id | FROM context-td 1 TO COYlIexT-ld2 |'
FROM SETS file-name { file-name}
A textual database may has more than one context structure, as shown in figure 4. For the
case, the phrase “UNDER confext-id” is necessary in order to specify a designated context
structure or a designated sub-context structure in which the retrieved contexts are contained.
For example, referred to figure 4, suppose that the query expression
(e22) FIND LEAF CONTEXTS
CONTAIN “textual data?base” OR “information retriev. ”
UNDER Eg;
is given. A paragraph, ie., a leaf context of the logical structure Ec, containing “textual
database”, “textual data base”, “information retrieve”, “information retrieval” or “information
retrieving” will be retrieved. The phrase “FROM context-id; TO. context-id, ” specifies a
subset of contexts of a context structure E; , from the context denoted by context-id; to the
context denoted by context-id, , as the search space. A constraint of this phrase is that in the
context structure E; , the context-id; must precede the context-id, . Sometimes, a user needs
to search the contexts from some of the results of previous queries or from a specific set of
contexts such as the titles of the documents. The FROM SETS phrase is provided for these
purposes. A set is actually a file consisting of a number of sorted context-ids. The constraint
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of the FORM SETS phrase is that all context-ids of the given files must belong to the same
context structure.

The query processor invokes three phases for evaluating a given query expression,
namely the consistence check, the search process and the post process. When a query
expression is given, the query processor first checks whether the scope clause is valid. There
are three cases must be considered.

(1) If a phrase “UNDER N, ..N, ” is given, the function get-pirs will be applied to confirm

that the N; ...N} is a valid context-id.

(2) If a phrase “FROM A, ..A; TO B, ..By " is given, the query processor first confirms that

- the context-ids A, ...A; and B; ...By are of the same ECHO tree, i.e., A; =B, . Then the
function get-ptrs is applied to confirm that both the Ay ...A and the B, ..B, are valid
context-ids and the A, ...A; precedes the B ..B, . The context A; ...A; is said to precede
the context B, ...B, if and only if EP(A, ...A; ) <BP(B, ...By ). ,

(3) Assume that a phrase “FROM SETS file, , ..., filey ” is given. The query processor OR-
merges these files to form a merged file SET and at the same time it checks that each
context-id of the files has the same first local name. The operation OR-merge has been
mentioned in detail in [Emra83].

If the consistence check is failed, then the query expression will be rejected.

6.1 THE SEARCH PROCESS

For a textual database, the actions of the query processor are dependent on the
retrieval method applied in the database. The retrieval method used in our sysetm is the
ARCIM. By using the ARCIM structure, a given search clause can be evaluated by a search
process to obtain a set of phrase-level posting lists in which each leaf context-id probably
satisfies the search phrase. Then these phrase-level posting lists have to be processed and
OR-merged by a post process to form a clause-level posting list as the result. In order to
provide a better retrieval performance, a bottom-up and greedy method is involved in both
the search process and the post process. The operations of the search process are mentioned
in algorithm-13 and -14. In addition, the post process will be mentioned in section 6.2.

Algorithm-13: Evaluate a given search clause to obtain a set of phrase-level posting lists.
Procedure: ,
Step-1: Partition the given search clause into a set of search phrases.
Step-2: Reconstruct each search phrase by using algorithm- 14.
Step-3: For each reconstructed search phrase, say B; B, ..By for any, perform the following
operations to obtain a phrase-level posting list.
(1) If count(B, ) =0, then return an empty posting list as the result.
(2) Otherwise, AND-merge PL(B, ) and PL(B, ) to form PL(B, B, ), then AND-merge
PL(B, B, ) and PL(B; ) to form PL(B, B, B;), and so on, until either an empty posting
list is obtained or PL(B, B, ...B, ) is formed. Where PL(B,; B, ..B;), 1<i<k, denotes a



posting list in which each leaf context contains all the characters B, , B, , .., and B; .
The operation AND-merge was introduced in [Emra83].

Algorithm-14: Reconstruct a search phrase.

Procedure: .

Step-1: Eliminate each term following an AND NOT operator and all operaiors from the
given search phrase. The result is a string containing only Chinese characters.

Step-2: Eliminate all repeated characters from the string obtained in step-1.

Step-3: By using the CIT specified by the scope clause, sort the remaining characters in a
nondescreasing order of counts.

It is clear that the réconstructed search phrase is a string consisting of a number of
non-repeated characters, say B; B, ...B, for any. The string B; B, ...By has the following
properties.

Prop.7: B; #B; for i#A.

Prop.8: count%Bi Y<count(B: ) for i<;j.

Prop.9: PL(B, B, .B, ) =PL(B, YPL(B, )n.."PL(B; ) for 1<i<k.

Prop.10: PL(B; B, ..By }CPL(B, B, ..By _; )<..CPL(B, ).

Prop.11: count(B, ) =0 implies PL(B; ) =null implies PL(B; B, ...B, ) =null.

These properties provide an important basis for the step-3 of algorithm-13. First, by
applying prop.11, if count(B, )=0, we rather immediately let the phrase-level posting list be
null than apply AND-merge operations. Second, referred to prop.8, prop.9 and prop.10, it is
obvious that the step-3 applies a shortest-first strategy to the AND-merge operations for a
reconstructed search phrase. And it is easy to find the similarities between the shortest-first
strategy applied to the AND-merge operations and the solution to the problem “optimal
storage on tapes”, i.e., a greedy method [HoSa78]. '

For a search process, the major factors of the performance are the number of AND-
merges and the number of leaf context-ids invoked by the AND-merge operations. The
evaluation of a reconstructed search phrase has a better performance than that of its original
form. The reasons are mentioned as follows. First, it is obvious that a reconstructed search
phrase contains less number of characters than its original form. Hence the evaluation of a
reconstructed search phrase needs less AND-merges and less leaf context-ids than that of its
orginal form. Second, in algorithm-13, a greedy manner is applied to the step-3. Referred to
[HoSa78], it is easy to prove that the AND-merge operations invoke the smallest total
number of leaf context-ids. .

However, the algorithm-14 is an information-lost operation. That is, some constaints
provided by an original search phrase are ignored. The lost information includes the terms
following AND NOT operators, the wild-card operators contained in terms, the relationships
among characters within terms and the relationships among terms. Hence there are some
“false-dropped” leaf context-ids that will occur in a phrase-level posting list. A leaf context-id
is said to be false-dropped if and only if it satifies a reconstructed search phrase but does not
satisfy the original search phrase. In addition, if either the phrase “UNDER Nj ...N; ” or the
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phrase “FROM A, ..A, TO B, ..B, ” is given as the scope clause, then a leaf context-id X
which does not satify the constrain is also a false-dropped leaf context-id.

6.2 THE POST PROCESS

The post process consists of three operations : the elimination of false-dropped leaf
context-ids, the adjustment of context-ids, and the merge operations. They will be mentioned
below.

Elimination of false-dropped leaf context-ids. In order to improve the precision of the
" query processing, the false-dropped leaf context-ids have to be eliminated from each phrase-
level posting list. There are three cases have to be considered. First, if the scope clause
“UNDER N; ..N; » is given, then for each phrase-level posting list, all the leaf context-ids
having no prefix Ny ...Nj must be eliminated. Second, if the scope clause “FROM A ..A;
TO B, ...B, " is given, then for each phrase-level posting list, all the leaf context-ids which are
out of the range from A, ...A; t0 B, ..B; have to be ignored. And finally, for a given search
phrase SP; , assume the phrase-level posting list PPL; is obtained by applying algorithm-13.
For each leaf context-id X contained in the PPL;, the post process must scan the leaf context
X and performs the following actions. '
(1) If the context X contains a term which is specified in the SP; and follows an AND NOT
operator, the context-id X has to be eliminated.
(2) If the context X does not contain all character strings specified in the SP;, except for the
strings following AND NOT operators, the context-id X must be ignored.
(3) If the context X does not satisfy all the contraints specified by the wild-card terms and
ordered terms, the context-id X must be deleted. -
The phrase-level posting list PPL; " which ‘satisfies the original search phrase SP; is then
obtained.

Adjustment of context-ids. Two cases have to be considered. First, if the context clause
“LEAF CONTEXTS” is given, the adjustment operation is not necessary. Second, suppose
that the context clause “CONTEXTS OF LENGTH k” is given. For the case, if a leaf
context-id contained in the PPL, " has the length equal to or less than the number k, it has not
to be adjusted. If a leaf context-id contained in the PPL; has the length greater than the
number k , say N; N, ..Ny Ny,; ..N, for any, then its postfix Ny, ; ..Nj must be
trancated. In addition to the second case, if the scope clause “FROM SETS file, , ..., filey ” is
given, then each context-id of the file SET which is mentioned in (3) before section 6.1, must |
also be adjusted. The adjusted SET is called SET.

Merge operations. If the given scope clause is not of the form “FROM SETS file, , ...,
file, ”, then the merge operation is that simply OR-merge all the phrase-level posting lists to
form the clause-level posting list as the result by applying the shortest-first method. Referred
to section 6.1, it is also easy to show that the OR-merge operations invoke the smallest total
number of context-ids. If the scope clause “FROM SETS file, ,...filey ” is given, then an
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additional AND-merge opertion is necessary. That is, the post process has to AND-merge
the clause-level posting list and the SET to obtain the final result.

6.3 THE MISCELLANEOUS OPERATIONS

In addition to the query operation discussed previously, there are some miscellaneous
operations provided by the query processor, e.g., the save-operation, the get_ prts operation,
and the get_ids operation. They are entioned below.

Save-operation. Recall from (e21) that the FROM SETS phrase allows a user to search
the contexts from some of the results of the previous queries. Hence the query processor
- must provide a save-operation in order to store the result of a query into a designated file. .

Operations get ptrs and get ids. A textual database having more than one context
structures, such as that mentioned in figure 4, is able to provide a query which invokes
~“interactions” among these structures. The interaction between two ECHO trees E; and E,
is defined as follows : Given a number of continual context-ids of the tree E, , say X, , X, , ...,
X, , to find a number of continual context-ids of the tree E, ,say Y;, Y,, .., Yj , such that
the contexts X, , X, , ..., X; are contained in the contexts Yy, Yy, «.csy Yj . As an example,
given a textual database, (T, Ec, Et), consisting of a text T and two ECHO trees Ec and Et
which represent the logical structure and the layout structure of the text T, respectively.
Suppose a user needs to query which paragraphs of the range from page i; to page i, satisfy
a given search clause. Assume that the paragraphs are denoted by leaf nodes of the tree Ec
and the pages are denoted by leaf nodes of the tree Et. Because it is impossible to search
paragraphs via the tree Et, the query must be tranferred into which paragraphs of the range
from paragraph j; to paragraph j, satisfy the given search clause by applying the interaction
between the trees Et and Ec. The interaction can be performed by the following two steps :
First, to find the BP(page i, ) and the EP(page i, ) by applying the get_ ptrs operations to the
tree Et. Second, to find a sequence of paragraphs containing the subtext of the text T from
the position BP(pagei, ) to the position EP(page i, ) by applying the get_ids operations to the
tree Ec. In addition, the interaction can be used to prevent the inconsistency occurred in a
query expression. |

7. THE MAINTENANCE SUBSYSTEM

Recall from section 1 that the maintenance subsystem provides the necessary
operations for maintaining the ECHO subsystem and the text retrieval subsystem. Referred -
to section 4.4, the ECHO subsystem is defined as an ECHO structure, denoted (T,E, ,E,
»»Eg ). And from section 5, the text retrieval subsystem is defined as a set of ARCIM
structures, denoted ((CIT, ,PLT; ),(CIT, ,PLT) ),..., (CIT, ,PLT; )), in which each structure
(CIT; ,PLT; ), 1<i<k, is the inverted index of the sub-ECHO structure (T,E; ). Hence the
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maintenance subsystem must provide the insertion, deletion and modification operations for
updating the ECHO structure and the ARCIM structures.

The basic updating operations for a sub-ECHO structure (T,E; ), including echoinsert,
echodelete and leafmodify, are mentioned in section 4.3. The operation echoinsert is provided
for inserting both the text and the ECHO tree of a given context X into the sub-ECHO
structure. It is important that before the insertion is performed, the context structure of X
must be marked up by using a text processor and then an ECHO tree denoting the context
structure has to be built by applying the tree-constructing operation, as mentioned in section
4.2. The operation echodelete can be used to remove both the text and the ECHO tree of a
designated context from the sub- ECHO structure. In addition, there are two cases of
modifications have to be discussed. First, if only a leaf context is modified, then a leafmodify
operation can be directly used to update the sub-ECHO structure. Second, suppose that a
non-leaf context X is modified. Since the context X is actually composed of a set of leaf
contexts, the modification of context X can be considered as the modifications of leaf
contexts of the context X. Hence the maintenance subsystem must invoke the leafmodify
operation many times, in which each leafmodify operation is for a modified leaf context.

Recall from section 5.2, the ARCIM structure (CIT; ,PLT; ) must be maintained if the
corresponding sub-ECHO structure (T,E; ) is updated. The basic updating operations for an
ARCIM structure (CIT; ,PLT; ) are mentioned in section 5.2. Each of the basic updating
operations deals only with the insertion, deletion or modification of a leaf context. Thus for
the case of updating a non-leaf context X, the following two steps has to be applied in order
to maintain the ARCIM structure. |
(1) For the cases of insertion and deletion, the updated context must be decomposed into a
set of leaf contexts. For the case of modification, both the original context and the
modified context have to be decomposed into sets of leaf contexts.

(2) For each of leaf contexts obtained from step (1), apply a proper basicupdating operation
to update the ARCIM structure.

For an ECHO structure (T,E, ,E, ,...E; ), it is important that the updating of a sub-
ECHO structure (T,E; ) may cause a propagated updating of a sub-ECHO structure (T.E; )s
j#. For example, the contents of pages must be adjusted if a paragraph is inserted or
deleted. The propagated updatings have to be fully manipulated by the system administrator.

8. CONCLUSION

The following are the advantages of the ECHO structure. First, multiple context
structures of documents can be provided by the ECHO structure, e.g., the logical structure
and the layout structures. Second, contexts of each level can be retrieved by means of the
ECHO structure. Thus the ECHO structure has the ability to provide a flexible search unit
for retrieving the textual information. Third, the ECHO structure can provide a subrange
search to speed up the retrieval performance. That is, a user can specify a subset of the
database as the search space. Fourth, the ECHO structure is relatively easy to maintain.
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There are just O(log n) nodes of an ECHO tree has to be updated if a context is inserted,
deleted or modified, where n denotes the number of nodes of the ECHO tree. Fifth, a
sophisticated retrieval method such as ARCIM is easy to attach to the ECHO structure. In
addition, the ECHO structure is language independent. For example, the ECHO structure is
suitable for either a Chinese textual database or an English textual database.

For an inversion method, the major factors of the search perfojmance are the AND-
merge and OR-merge operations. Referred to section 6, the ARCIM can reduce the number
of AND-merge operations, the total length of posting lists invoked by the AND-merge
operations, and the total length of posting lists invoked by the OR-merge operations. Thus
the ARCIM improves the search performance. .

However, there are two important constituents of documents excluded from our system
at current state. They are the text components of non-character type and the annexed
attributes of contexts such as bibliographies of documents and the semantic information of
contexts. The representations and operations of them will be studied in the future.
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