g) W

Journal of the Chinese Institute of Engineers. Vol. 13, No. 6, pp. 607-622 (1990)

AN EXPERIMENTAL MODEL OF CHINESE
TEXTUAL DATABASE

Shih-Shyeng Tseng
Computing Center, Academia Sinica, Taipei, Taiwan 11529, R.O.C.
Chen-Chau Yang

Department of Electronic Engineering, National Taiwan Institute of Technology, Taipei, Taiwan 10772, R.O.C.

Ching-Chun Hsieh

Institute of Information Science, Academia Sinica, Taipei, Taiwan 11529, R.O.C.

Key Words: texwal database, document model, odcument retrieval.

ABSTRACT

A textual database deals with retrieval and manipulation of documents.
It allows a user to search on-line complete documents or parts of documents
rather than attributes of documents. Resembling a formatted database which
uses a data model as its underlying structure, a textual database has to base
its development upon a document model. In this paper, a document model,
called the ECHO model, is proposed. The ECHO model provides a docu-
ment representation, called the ECHO structure, for expressing documents
and operations on the representation that serve to express queries and
manipulations on documents. It has the ability to provide multiple document
structures for a document, a flexible search unit for retrieving textual infor-
mation, and a subrange search on a textual database. In addition, the ECHO
structure is relatively easy to maintain. An architecture of a texmal database
based on the ECHO model is also proposed. In order to improve the query
performance, a refined character inversion method, called ARCIM, is pro-
posed as the text-access method of the Chinese textual database. The AR-
CIM can retrieve texts faster than a simple inversion method and requires
less space overhead.

2R R L R

TR
FRFARFEFE RO
B

HYEBTEAGRERITIBENER

BE &
FREF R Be F BB R

*Correspondence addressee

607

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 609

processor. The query processing will be discussed in Sec-
tion 6. The text retrieval subsystem plays the role of im-
proving the retrieval performance. An ARCIM structure
which is provided as the underlying mechanism of the text
retrieval subsystem will be introduced in Section 5. The
ECHO subsystem is an ECHO structure which provides
a2 mechanism of storing documents and their context struc-
tures. The ECHO subsystem also provides the search
operations on the ECHO structure. These operations will
be mentioned in Section 4.1. The maintenance subsystem
provides the necessary operations for maintaining the text
retrieval subsystem and the ECHO subsystem. The
maintenance operations on the ECHO structure and on
the ARCIM structure will be mentioned in Sections 4.3
and 5.2, respectively.

DOCUMENT STRUCTURES

Definijtion 1: Document. A document can be defin-.

ed in two ways: in terms of the author’s thoughts and in
terms of its constituents. According to the former, adopted
from (17], a document is defined as a material reproduc-
ton of the author’s thoughts and its prime objective is
to transmit, comumunicate and store these thoughts as ac-
curately as possible, regardless of the medium used for
these thoughts. The later simply defines a document as
a text associated with one or more document structures.

In Definition 1, the texr is defined as a
heterogeneous data string consisting of a sequence of text
components. The text components may be symbols,
words, phrases, or sentences in natural or armificial
languages, figures, formulas, or tables. In addition, a texr
element is defined as a text forming a meaningful unit of
a document, which may be the whole document or a part
of the document, €.g., a paragraph, a section or a chapter.
A text element which does not contain any subordinate
text elements is called a basic text element.

When an author writes a document, the text of the
document has to be organized into a logical structure in
order to reflect the conceptual skeleton of the author’s
thoughts. The logical structure is determined by the author
and is unique and unchangeable. In practice, the author

docunment (book)
/ \
/ A\
chapter....chapter
/ A\ /
/ \ / \
section section
/ A\ \

/ \ / \
subsection subsection
/ \ / \
paragraphc....... paragraph

Fig. 2. An example of logical structure.

docu-lcn t(book)

+

| | | I

cover frontlpart conten'lzs part rear part

_______ o +

-+
| ! | |
title preface table of chapter...chapter appendix index
page pages contents | : pages pages
pages T--+---+ :
title normal
page pages
Fig. 3. An example of layout structure.

first organizes a number of text components to form a
basic text element, e.g., a paragraph. Then he organizes
a number of basic text elements to form a larger one, e.g.,
a section, and so on, until the document is formed. These
text elements f%nn a hierarchical structure in which each
text element, except for a basic text element, is a com-
posite of subordinate text elements, as shown in Fig. 2.
The hierarchy of text elements of a document is referred
to as the logical structure of the document. The logical
structure is always presented in a human readable form,
namely layout structure. For a document, the layour struc-
ture reflects the formatting of the text and the logical struc-
ture of it in a representation medium such as paper or
screen. The layout structure, similar to the logical struc-
ture which is the hierarchy of text elements, is the hierar-
chy of layout elements. A layout element may be a page,
a set of pages, or a subordinate element of a page, ¢.g.,
a line, a block or a frame. In general, a page forms the
representation unit of the document contents. A number
of pages constitute a set which may be a chapter, a
preface,. or a table of contents, etc., as shown in Fig. 3.

Definition 2: Context. Given a text, a contexr is

defined as follows:

(1) The whole text is a context.

(2) Ifacontext is partitioned into a series of nonoverlap-
ped but concatenated subtexts, then each subtext is a
context.

It is clear that Definition 2 is recursive. In Deﬁqi-
tion 2, the whole text specified in (1) is referred to as the
root context or the level 1 context. The partitoning opera-
tion specified in (2) is referred to as hierarchical parti-
tioning. That is, a level i context may be partitioned into
a series of level i+1 contexts. A context Y is said to be
contained in a context X, or reversely, the context X is

.said to contain the context Y, if and only if the context

Y is directly or indirectly partitioned from the context X.
A leaf context is defined as one that doesn’t contain any
lower-level context. Because the number of text com-
ponents of a text is finite, it is trivial that the number of
levels from the root context to any leaf context is also
finite.

Theorem 1: Each context of a given text forms a
tree structure, called the conrexr structure.
Proof: Adopted from the definition of a tree proposed in
[15], the proof is given as follows. The given text is the
level | context. Depending upon whether the level i con-

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 611

That is, a set of context delimiters has to be inserted into
the text in order to identify each context. Every context
is then surrounded by a pair of beginning and ending
detimiters. A text scanner can then be used to find the
beginnings and the ends of contexts. A higher-level con-
text containing the current context or a lower-level con-
text contained in the current context can also be searched
by scanning the text forward and backward. The advan-
tages of an implicit representation are: the data structure
is simple, it requires only space overhead for context
delimiters, and it is relatively easy to maintain. However,
its disadvantage is that one has to retrieve contexts by
means of full text scanning. The time required for scann-
ing a context from the whole database is O(L), where L
denotes the length of the whole text. Even though a refined
string pattern matching method can improve the search
speed‘ (1,2,14], fulll text scanning still consumes too much
time retrieving contexts. Hence it is not reasonable to
develop a large textual database using the implicit
representation. Recall from Section 2 that a context struc-
ture of a given text can be explicitly represented by a con-
text tree with each node of the tree denoting a context
of the context structure. Hence instead of inserting a set
of context delimiters into the text, an explicir representa-
rion uses an explicit context tree to reflect each context
structure of the text.

Definition 3: Explicit context tree. An explicit con-
rext tree is a context tree which represents a context struc-
ture of a given text. In the explicit context tree, each node
uniquely denotes a context of the context structure and
carries a local name and a vector consisting of a pair of
pointers (BP,EP). The pointers BP and EP point to the
_ beginning and the end positions of the context denoted
by the node, respectively. _

In a context tree H, it is clear that for each node
X, there exists a unique search path from the root to node
X. The parh name of ncde X is then defined as the list
consisting of the local names of the nodes along the search
path of node X. The number of nodes (or local names)
in a path name is referred to as the length of the path name.

Defintion 4: Explicit representation. The explicir
represeruarion of the context structures of a text T is defin-
ed as a finite set, (T,H,, ..., Hy), consisting of the text
T and k explicit context trees.

A textual database is basically an instance of the
explicit representation, as shown in Fig. 4. In Fig. 4, the

FAN N\ VAN
/ N\ / \ / \
/ \ / \
/ He s / Ht N
/context \ /context \ /context \
/ tree for \ / tree for \ / tree for \
/ logical \ / storage \ / layout

/ structure °\ // structure: \ // structure \
\

_____________________ - —————

Fig. 4. An example of explicic representation.

(1 ?Z‘J)
¥ . 1
b 52 b3 Ml
(1,18) (l91354) (.'!551749l (750|929)
Jood ! I
o1 o [
(19,30) (Jl.iis'i) (355.370) (371,558) (559, 749) (755.750)(75? 929)

| I !

[S SN [S bmbmmmmmed bemmmaema .

|
d 2 d3 d4 d5 dg a7 a8 a9
(31,380 (40. 1441 (145, 354) (371, 385) (388, 558) {550, 508) (569, 749) (781, 760) (770.929)

Fig. 5. An example of context tree.

textual database is simply represented as (T,Hc,Ht,Hs),
where T denotes the whole text of all documents of the
database, and Hc, Ht and Hs respectively represent the
logical structure, the layout structure, and the storage
structure of the text T. Both the logical and the. layout
structures have been mentioned, in Section 2. The storage
structure represents how the text T is stored in the secon-
dary storage of a particular computer system. In addition,
an example of the context tree is shown in Fig. 5.
. Definition 5: Context-id. Given a text T and a con-

text tree H denoting a context structure of the text T,
assume that each context X of the context structure is
denoted by a node X’ of the tree H. The contexz-id of the
context X is defined as the path name of the node X.

In an explicit context structure (T,H,, ... Hy), the
beginning and the end positions of any context can be easi-
ly searched if its context-id is given. A higher-level con-
text containing the current context or a lower-level con-
text contained in the current context is also easily search-
ed via the links on the context trees: The time required
to search any context by means of a context tree H;,
1 i<k, is O(n), where n denotes the height of the tree
H;. The number n is roughly O(log N) and is much
smaller than L, where N denotes the number of nodes of
the tree H; and L denotes the length of the text T. Hence
from the viewpoint of search speed, the explicit represen-
tation is much better than the implicit one.

An explicit context tree has an additional property
as follows; -
Property 5: For each node X of an explicit context tree,
if the leng,t,h.v,jof its path name is m, then m=1 and the
path name of the node X can be formally presented as
a list N...N. It is clear that the node X has m—1
ancestors and each of them is denoted by a proper prefix
of the list N...N,, where a proper prefix of the list N,
...Np is defined as a sublist of the form N, --Nj,
l=j<m. It is obvious that this property also holds for
the context-id of the context denoted by the node X.

The advantages of the explicit representation will
be mentioned in Section 7. Its disadvantages are: it re-
quires space overhead of storing the context trees, and
both of the text and the context trees have to be updated
in order to maintain a context. In a context structure
denoted by a context tree H, the maintenance cosr of any
context X is defined as the number of the nodes of the
tree H whose vector (BP,EP) must be updated if the con-

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chiness Textual Database 613

Theorem 3: In an ECHO tree, the D-value and the
L-value of any node X, i.e., D(X) and L(X), except for
D(root), can be computed as follows.

(1) If the node X is a leaf node, then L(X) is actually the
length of the leaf context X; otherwise, L(X)=L
(Y)+...+L(Yy, where Y, ..., Y are all children
of the node X.

(2)If the node Y is the leftmost child of its parent, then

_ . D(@)=0; otherwise, D(Y)=D(Z)+L(Z), where Z is

the nearest left sibling of the node Y, i.e., the node
Z has the same parent of the node Y and is in the posi-
tion immediately preceding the node Y.

Proof: From Definition .6 and Property 3, it is easy t
show part (1). Part (2) is then proved as follows. For each
non-leaf node X, assume that its children are nodes Y|,
..., Y,, from left to right. From Definition 2, it is ob-
vious that the contexts Y and X have the same beginn-
ing pposition. Hence D(Y,)=0. In addition, it is trivial
that

D(Yl) = D(Yi_[) + L(Yi_[), 1<l$k, (5)

where node Y;_, is the nearest left sibling of node Y.
From the above, this theorem has been proved. "

Theorem 4: BP(N, ...Ny) and EP(N,...Np, i.e.,
the beginning and the end positions of the context denoted
by a node Nj...Nj of an ECHO tree, can be computed
by

BP(N,...Np)=L{gicm DWN...N), and - (6)

EP(N,...Np)=BP(N,...Np+LN,..Np)~1. (7

The proof-of Theorem 4 is trivial and therefore omitted. =

From Definitions 3 and 6, it is clear that an explicit
context tree H and an ECHO tree E are equivalent if they
represent the same tontext structure. That is, they are the
same except that each vector (BP,EP) of the tree H is
replaced by a vector (D,L) of the tree E. In addition, the
trees H and E have the same number of nodes. The ex-
plicit context tree H can be transferred tw the equivaient
ECHO tree E by the following method. First, let the
D(root) of the tree E be the BP(root) of the tree H. Se-
cond, for each leaf node X of the tree H, the L(X) is com-
puted by

LX) = EP(X)—BP(X)+1 (8

Last, compute all the D- and L-values of the tree E by
applying Theorem 3. For example, the ECHO tree which
is equivalent to the context tree shown in Fig. 5 is shown
in Fig. 6. Reversely, the ECHO tree E can be transfer-
red to the equivalent explicit context tree H by applying
Theorem 4.

a
(1.?29)

]
b3 MI
(354, 395) (749, 180)

|
{ | |
e5 cB cf
188) (204,191) (0.11)(11.}89)

|
dll d.'!.‘ d.'li dl d5| dé d’ll dg d9
(0.9) (9.105) (114,210) (0, {5) (15,1731 (0, 10) {10, 181) (0,9) (9.180)

b b2
(0,18} (18..'|336)

[T e— —— +

|

! | | |
cd

I

el c2 c3
(0,12) (12.?24) (0,18) (18

Definition 7: ECHO structure. The ECHO struc- -
ture of the context structures of a text T is defined as a
finite set consisting of the text T and k ECHO trees E|,
..., By, denoted (T,E,, ..., EY). An ECHO structure (or
sub-ECHO structure) consisting of a text and only one
ECHO tree is called a singular ECHO structure.

From the above, it is clear that an explicit represen-
tation (T,H,, ..., Hy) can be transferred to an equivalent
ECHO structure (T,E,, ..., Ey) by replacing each con-
text tree H; by an equivalent ECHO tree E;, 1<i<k.
For example, Fig. 4 can also be used to depict a textual
database based upon the ECHO structure if the context
trees He,Ht and Hs are replaced by the equivalent ECHO
trees Ec, Et and Es, respectively.

1. Search operations on ECHO structures

A search operation on an ECHO structure
(T,E,,--+E¢) is an operation that retrieves information
from an ECHO structure. The information includes
context-ids, beginning and end positions of contexts and
texts of contexts. A search operation is always constrain-

"ed to search one type of informaiton from a singular

ECHO structure (T,E;), 1 =i=<k. The search operations
are ger-ptrs, get-rext, ger-id, ger-leafts and ger-ids.
Definition 8: ger-prrs and ger-texs. Assume that an

ECHO structure (T,E,,...Ey) and a context-id Ny...N

are given. "

(1) The search operation ger-ptrs computes the beginn-
ing and the end positions of the context Ny...Np,
i.e., BP(N,...N) and EP(N...Np).

(2)The search operation ger-texr reads the context
Ni...Np, i.e., the subtext between the positions
BP(N,...Ny) and EP(N,...N_), from the text T.

The search operation ger-prrs is easily performed
by applying Theorem 4. Let us take node dy in Fig. 6 as
an example. The context-id of context dy is ab; c¢5 ds.

From Theorem 4, we have

BP(abscsds) = D(a)+ D(bs) +D(cs) + D(d)
=1+354+204+10 = 569, and
EP(ab;C5d7) = Bp(ab3C5d7) + L(d7) -1
=569+ 181—1=749.

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 615

rect sequence. Assume that the nth ECHO tree of each
given ECHO structure, denoted E,, l=n=kI=<ix<j,
represents the n-th kind of context structure. And third,
only the ECHO trees that represent the same kind of con-
text structure are able to be combined.

Algorithm 3: Perform the ECHO-combining
operation.
Input: j ECHO structures (T, E,;,
Ejj, -y Eyp- :
Output: A combined ECHO structure (T,E,, ..., Ey).
Procedure: :
T: = nul;
Jor i: = 1tojdo append (T.T:);
forn: = 1twkdo

ceny Ekl)v ceny (T_’r

begin
create a new node E,;
fori: = 1ltj

do link the node E,; to the node E, such thar E,
becomes the rightmost child of E,;
D(E,): = the beginning position of T:
D(E,): = 0;
fori: =21t0jdo D(Ey): = D(E, ;) +L(E,.,);
L(E,): = D(Ey) +L(Ey);

end;
3. Basic updatbing operations on ECHO structures

A basic updating operation is an operation that
maintains a singular ECHO structure. That is, for a
singular ECHO structure (T,E), a basic updating opera-
tion can insert a new context into it, delete an old context
from it, or modify an existing leaf context of it. These
operations are named echoinsert, echodelete and leaf-
modify, respectively. In general, an updating operation
on an ECHO strucwre (T,E,, ..., E,) has to invoke a
series of basic operations and some optional search
operations.

Definition 12: echoinsert. Assume that an ECHO
structure (T,E), an object of insertion (Tx,Ex), and a
parameter either Ny ...N:1 or N; ...N_:r are given.
The updating operation echoinsert performs either of the
following operations, depending upon which parameter
is given.

(1) If a parameter N, ...Ny:1 is given, then the text
Tx is inserted into the text T in the position im-
mediately preceding the context N, ...N,, and the
node Ex is linked to the node Ny ...N_, as the
nearest left sibling of the node N, ...N,,.

(2) If a parameter Ny ...N_:r is given, then the text
Tx is inserted into the text T in the position im-
mediately following the context N ...N, and the
node Ex is linked to the node N ...N_ as the
nearest right sibling of the node N, ...N_.

It is obvious that after the text Tx is inserted into
the text T, the following occur. First, the BP(Ex) is
changed, i.e., D(ex) is changed. the new D(Ex) has to be
computed by applying Theorem 3. Second, 2ach context

denoted by a right sibling W of the node Ex is moved
right by L(Ex) from its original position, i.e., D(W) must
be increased by L(Ex). Third, the length of each context
U containing the text Tx is increased by L(Ex), i.e., L(U)
has to be increased by L(Ex). And fourth, for each
ancestor U of the node Ex, each context denoted by a right
sibiling W of the node U is also moved right by L(Ex)
from its original position, i.e., D(W) must be increased
by L(Ex).

Definition 13: echodelete. Given an ECHO struc-
ture (T,E) and a context-id N ...N,, of the ECHO struc-
ture, the updating operation echodelete removes the con- ,
text Ny ...Np, from the text' T and removes the subtree
N ...Np, from the ECHO tree E.

It is clear that after the context N, ...Np, is remov-
ed, the following occur. First, each context denoted by
a right sibling W of the node N ...N,, is moved left by
L(N; ...Np) from its original position, i.e., D(W) has to
be reduced by L(N ...N). Second, the length of each
coatext U containing the context N, ...N_, is reduced by
L(N, ...Ny, i.e., L(U) must be reduced by L(N, ...N_.
And third, for each ancestor. U of the node Ny ...N_,
each context denoted by a right sibling W of the node U
is also moved left by L(N, ...N,) from its original posi-
tion, i.e., Dy has to be reduced by L(N, ...Np.

Definition 14: leafmodify. Given a leaf context X
of an ECHO structure (T,E) and the modified version of
the context X, say context X, the updating operation leaf-
modify replaces the context X by the context X’. In addi-
tion, the operation leafinodify updates the relevant D-
values and L-values of the ECHO tree E if LX) #LX).

The modification of a context is actually realized
by modifying some leaf contexts of the context. The
modification of the leaf context X may cause a change
in L(X), ie., LX) =L(X). When L(X) is changed,
adopted from the above, the following occur. First, for
each right sibling W of either the node X or any ancestor
of the node X, the D(W) has to be changed to
DW)—-L(X)+L(X"). And second, for each ancestor U
of the node X, the L(U) must to be changed to
LU)~-LEX)+L(X). . o

Theorem 5: For a nearly balanced singular ECH
structure (T,E), the maintenance cost of a context is O(log
N), where N is the number of nodes of the ECHO tree E.
Proof: We first consider the cases of insertion and dele-
tion. From the discussions following Definitions 12 and
13, the maintenance cost MC, of a context N ...N_, is
given by

MC| = m+L, i< K for m=<n, (10)

where K; is the number of the right siblings of each node
Ny ...Nj and n is the height of the ECHO tree E. Because
the ECHO tree E is nearly balanced, it is reasonable to
assume that the average number of children of each non-
leaf node of E is K and n = log N. Thus we have

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 617

A'NB’.

Difference of context-id sets. The A’—B’ is per-
formed as follows. First, for each context-id X,
l<i=m, if there does not exist any context-id Y;,
I =j=n, such that X;=Yj or Y; is a proper prefix of X;
or X; is a proper prefix of Y}, then X appears in A’ —B’.
Second, for each context-id Xj, 1 <i<m, if there exists
a context-id Y;, 1 =j=n, such that X; is a proper prefix
of Y;, then each context-id of the set difference (Xj;, ...,
Xin)—(Y) appears in A’—B’. Each Xy, I<k=<h, isa
descendant of X;, which is either a leaf context-id with
length(Xy) <length(Y)) or a non-leaf context-id with
length(Xy) =length(Y)). And third, nothing else appears
in A"-B’. ‘

The set operations of context sets (or context-id sets)
provide an important basis for processing the query of
textual databases. In general, a query consists of some
predicates which are combined by Boolean operators.
Given two context sets A and B as an illustration, sup-
pose each member of the set A satisfies a predicate P and
each member of the set B satisfies a pedicate Q. It is clear
that each member of AUB satisfies P or Q or both, each
member of ANB satisfies both P-and Q, and each member
of A —B satisfies P but not Q. Hence the context sets AUB.
AMB and A —B are the results of the Boolean expression
“P OR Q”, “P AND Q" and *‘P AND NOT Q’,
respectively. ‘

THE ARCIM

A rext-access method is the method of identifying,
retrieving, and/or ranking contexts in a collection of con-
* texts, that might be relevant to a given query. The text-
access methods, as discussed in [6,16], can be classified
into four categories: full text scanning, inversion of terms,
surrogates of contexts and clustering. The basic idea of
an inversion method is that a context is considered as a
list of terms, which describe the contents of the context
for retrieval purposes. In an English text, a term is ac-
tually a word. A fast retrieval can be achieved if one in-
verts terms. An inversion method uses an index structure
in which each entry consists of a term dlong with a posting
list. The posting list is a list of pointers each of which
points to a context containing the term. The disadvantages
of the inversion method are: the storage overhead
(50-300% of the size of the text files [8]); the cost of up-
dating and reorganizing the index, if the environment is
dynamic; and the cost of merging the posting lists, if they
are too long or there are too many of them. In contrast,
the advantages are that it is relatively easy to implement
and is fast. Hence the word inversion has been adopted
in most commercial systems, such as BRS, DIALOG,
MEDIARS, ORBIT and STAIRS [18].

The word inversion is not appiicable to Chinese
text. The reasons are as follows. A Chinese sentence does
* not contain any natural delimiters, such as blanks in an

CIT
G o . .
oD | PR || e
PL(C2)
G e | |
------------ \
e

Fig. 7. The index structure of ARCIM.

English sentence, to separate Chinese words. While some
automatic methods of identifying the words in a Chinese
sentence have been proposed {7,11,19], it is still impossi-
ble for words in a Chinese sentence to be completely iden-
tified by any computer technology. Hence a character in-
version isntead of the word inversion is used for retriev-
ing Chinese text. A refined character inversion method
(abbr. ARCIM) will be proposed in this paper.

The ARCIM uses an ARCIM smuctucs 23 its index
structure. The ARCIM structure, denoted (CIT,PLT), con-
sists of a character index table CIT and a posting list table
PLT, as shown in Fig. 7. An éntry of the PLT, denoted
PL(C), is a posting list consisting of a variable number
of ordered leaf context-ids. Each context-id X of the
PL(C;) stands for the condition that the context X comn-
tains the Chinese character C;. In the CIT, each enuy
consists of a count CNT(C)) and a pointer PTR(C;). The
CNT(C) denotes the number of leaf context-ids of the
PL(C) and the PTR(C)) points to the starting location of
the PL(C;). Because the coding space of Chinese
characters of a computer system is fixed [21], the CIT
can be organized with a constant size and may be per-
manently located in the main memory. If a Chinese
character C; is given, then the CNT(C;) and the PTR(c)
can be easily searched from the CIT by using a specific
hash function. An example of the hash function has besn
introduced in {20]. If there exists a Chinese character C;
which does not appear in any context, then the CNT(C)
and the PTR(C;) must be set to zero and nil, respective-
ly. And the PL(C;) does not appear in the PLT. There

- are three types of operations provided for the ARCIM

structure: the search operations, the creation operations
and the maintenance operations. The search operations
are discussed in Section 6 rather than in this section.

1. The creation of ARCIM structures

Definition 18: ARCIM-creating operation. Given
a singular ECHO structure (T,E), the ARCIM-creating
operation creates an ARCIM structure (CIT.PLT) from

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Modei of Chinese Textual Database 819

bol — denores a set difference operation. It is clear thar
the characters B, ...B, are added to the context X and
the characters D, ...D, are removed from the contex: X.
Step 3: Apply steps 2 and 3 of Algorithm 5 to the string
B\ ...B,. And apply steps 2 and 3 of Algorithm 6 to the
string Dy ...D,,.

QUERY PROCESSING

The steps involved when a user queries informa-
tion from a textual database can be roughly summarized
as follows. He first selects some terms (keywords) which
stand for his topic of interest. These terms have to be con-
joined by some operators, as mentioned in [9], o form
a predicate. Then he queries the database to find the con-
texts that satisfy the predicate. In our system, a query ex-
pression has the following form:

FIND context-clause
CONTAIN search-clause
scope-clause; (14)

In a query expression, the conrext-clause specifies
which type of context is retrieved. A context clause has
the following form:

context-clause
.. = LEA CONTEXTS | CONTEXTS OF
LENGTH k (15)

The symbol :: = means ‘‘is defined as’’ and the ver-
tical bar | stands for ‘‘or’’. The phrase ‘‘LEAF CON-
TEXTS” denotes that each retrieved context must be a
leaf context. The phrase ‘“‘CONTEXTS OF LENGTH k"’
specifies that each retrieved context is either a leaf con-
text having a context-id length no greater than k or a non-
leaf context having a context-id length of k.

The search-clause specifies a condition the retrieved
contexts must satisfy. The basic form of a search clause
is shown below.

search-clause _

1= search-phrase {OR search-phrase) (16)
search-phrase

.o = term {AND [NOT] term} amn
term

‘- = string | wild-card-term | ordered-rerm (18)

The braces {...} denote a repetition and the brackets [...]
denote an optional item. The operations for a search clause
will be discussed later,

The scope-clause specifies the search space a query
invokes. A scope-clause has the following form:

scope-clause

11 = UNDER context-id |
FROM contexr-id) TO context-id, |
FROM SETS contexr-name {,conzexz-
ser-name } 19

An ECHO structure may have more than one ECHO tree,
as shown in Fig. 4. In this case, the phrase ‘‘“UNDER
conrext-id”’ is necessary in order to specify a singular
ECHO structure in which the retrieved COntexts are con-
tained. For example, assume that the following query ex-
pression is given.

FIND LEAF CONTEXTS
CONTAIN “‘textual data?base’” OR

‘‘information retriev*”
UNDER Eg; (20)

A paragraph, i.e., a leaf context of the logical structure
Ec, containing ‘‘textual database’”, ‘‘textual data base’’,
“‘information retrieve’”, “‘information retrieval’’ or “‘in-
foramtion retrieving’* will be retrieved. The phrase
“FROM context-id, TO context-id,” specifies a subset
of contexts of a singular ECHO structure, from the con-
text denoted by context-id; to the context denoted by
context-id;, as the search space. A constraint of this
phrase is that the context denoted by context-id, must
precede the context denoted by context-id,. Sometimes,
a user needs to search the contexts from the results of
previous queries or from a specific context set such as
the titles of the documents. The FROM SETS phrase is
provided for these purposes. The constraint of the FROM
SETS phrase is- that all members of the given sets must
belong to the same ECHO structure.

The query processor invokes three phases for
evaluating a query expression, namely consistence check,
search process and post process. When a query expres-
sion is given, the query processor first checks whether
the scope clause is valid, i.e., the consisrence check. There
are three cases that must be cfonsidered.

Case 1: If a phrase ““UNDER N, ...Ny" is given, the
query processor applies the operation get-prrs to confirm
that Ny ...Ny is a valid context-id.

Case 2: If a phrase ““FROM A, -A; TO By ...B is
given, the query processor confirms first that the context-
ids Ay ...Aj and B, ...B, are of the same ECHO tree,
t.e., A;=B,. Then the operation ger-pirs is applied to
confirm that A,...A; and B,...B, are valid context-ids
and A,...A; precedes B,...B,. The context Al A is said
to precede the context B,...B, if EP(A,...A) <
BP(B,...By.

Case 3: Assume that a phrase “FROM SETS Sy, .,
Sy’ is given. The query processor OR-merges these con-
text sets to form a larger one and at the same time it checks
that each context-id of the sets has the same root name.
If the consistence check fails, then the query expression
will be rejected. The search process and the post process
are discussed in Section 6.1 and Section 6.2, respectively.

1. The search process

After the query expression is confirmed by the con-

S.S. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 621

specified by the wild-card terms and ordered terms,

the context-id X must be deleted.
The phrase-level posting list PPL;" which satisfies the
original search phrase SP, is then obtained.

Adjustment of context-ids. Two cases have to be

considered. First, if the context clause ““LEAF CON-
TEXTS™ is given, the adjustment operation is not
necessary. Second, assume that the context clause ‘‘CON-
TEXTS OF LENGTH k™’ is given. In the case, if a leaf
context-id contained in the PPL;" has a length equal to
or less than the number k, it does not have to be adjusted.
If a leaf context-id contained in the PPL;’ has a length
greater than the number k, say Ny ...Ny Ny, ...N, then
its postfix Ny, ...Ny, must be truncated. In addition to
the second case, if the scope clause ‘““FROM SETS §,,
..., S,"" is given, then each context-id of the resultant set
of OR-merging sets S, also is adjusted. The adjusted
resultant set is called set S.

- Merge operation. If the scope clause is not of the
form **“FROM SETS S, ..., S¢”’, then the merge opera-
tion is simply OR-merge for all the phrase-level posting
lists and forms the clause-level posting list. From Sec-
tion 6.1, it is also easy to show that the OR-merges in-
voke the smallest total number of context-ids if a shortest-
first strategy is applied. If the . cope clause *'FROM SETS
Sy, ---» 8¢’ is given, the clause-lcvel posting list and the
S have to be AND-merged in order to obtain the final
result.

'CONCLUSIONS

The following are the advantages of the ECHO

structure. First, the ECHO structure is applicable to a ‘

Chinese textual database or an English textual database,
i.e., it is language-independent. Second, multiple context
structures of documents can be represented by the ECHO
structure, e.g., the logical structure and the layout struc-
ture. Third, any context of a document can be searched
by means of the ECHO strucutre. Hence the ECHO struc-
ture has the ability to provide a flexible search unit of a
query. Fourth, the ECHO strucutre can provide a
subrange search to speed up the retrieval operation. That
is, a user can specify a subset of the database as the search
space. Fifth, the ECHO structure is relatively easy to
maintain. Only O(log N) nodes of an ECHO tree have
to be updated if a context is inserted, deleted or modified,
where N denotes the number of nodes of the ECHO tree.
And last, it is easy to artach a sophistcated retrieval
method such as the ARCIM to the ECHO structure. These
advantages, except for the fifth one, also hold for the ex-
plicit representation. In addition, for an inversion method,
the major factors of the search performance are the AND-
merges and OR-merges. Referred to in Section 6, the AR-
CIM can reduce the number of AND-merges, and the total
length of posting lists invoked by the AND-merges and
by the OR-merges. Hence the ARCIM improves the

search performance.

Adopted from the definition of the text mentioned
in Section 2, a text component can be roughly classified
into either character type or non-character type. A text
component of the character type is the one that consists
of only characters, such as a symbol, a word, a phrase,
and sometimes a formula or table. The figures such as
pictures, diagrams, drawings, paintings, or images, by
contrast, are text components of the non-character type.
Text components of the non-character type are excluded
from our system at present. In addition, the annexed at-
tributes of contexts such as bibliographies of documents
and the semantic information of contexts are also exclud-
ed. Representations and operations of these will be studied
in the future.

NOMENCLATURE
ARCIM a refined character inversion method
BP(X) the beginning position (pointer) of the con-
text X '
CIDLIST{X) the ordered set of CIDPAIRs of the con-
text X

CIDPAIR(a,X) a pair of Chinese character a and the
context-id X, in which C is contained
in the context C

CIT character inversion table

CLIST(X) the order set of different Chinese charac-
ters of the context X

CNT(a) the count of the contexts containing the
Chinese character a

DX) - the distance between the beginning posi-
tion of the context X and that of the con-
text immediately containing X

ECHO explicit context-hierarchical organization

EP(X) the end position (pointer) of the context X

LX) the length of the context X

PL(a) the order list of context-ids (i.e., posting
list) denoting the contexts containing the
Chinese character a

PLT posting lists table

PPL a phrase-level posting list

PTR(a) the pointet that points to the PL(a)

REFERENCES

1. Aho, A.V. and M.J. Corasick, ‘*Efficient String
Matching:. An Aid to Bibliographic Search,”
Commun. ACM, Vol. 18, No. 6, pp. 333-340 (1975).

2. Boyer, R.S. and J.S. Moore, ‘A Fast String
Searching Algorithm,” Commun. ACM, Vol. 20,
No. 10, pp. 762-772 (1977).

3. Coombs, J.H., A.H. Renear and S.J. Derose,
““Markup Systems and the Future of Scholarly Text
Processing,”” Commun. ACM, Vol. 30, No. 11, pp.
933-947 (1987).

